srarening languags researl

Programming in Lua — The Lua Implementation

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

@ Lablua

Navigating the source

 The source code for Lua 5.2 is online at

* Includes lists the three include files that external libraries use, plus luaconf.h,
for compile-time configuratio of Lua

Core lists the files that implement the Lua compiler and virtual machine

Libraries is the code for the built-in functions and modules of the standard
library, all implemented in terms of the C API

Interpreter is actually just the REPL, the hard work is done by the core; the
REPL just uses API functions!

Compiler is also just a shell around the actual compiler that is in the core

http://www.lua.org/source/5.2/

@ Lablua

A quick tour of the core

« lapi.c implements the C API (functions with 1ua_ prefix); the lualL_ API
functions are actually in 1auxlib. c!

lobject.h has the representation of Lua values

lstate.h has the (internal) representation of Lua states, private to the core

lopcodes. h has the instruction format and the list of instructions for the virtual
machine

lvm. c is the core of the virtual machine, with its execution loop (in
luaV_execute) and some support functions

@ Lablua

A quick tour of the core (2)

« 1do.c implements function calls and the management of the call stack and the
value stack, as well as error handling

« 1string.c manages the “string table”, where Lua keeps a canonical copy of
each string; the actual string values are just pointers to entries in this table

e 1table.c is the implementation of tables, and has the logic for handling the
table’s array and hash parts, and resizing

« 1tm. c has a few functions to fetch metamethods (they were called tag methods
prior to Lua 5.0)

* 1func.c has a few functions to handle prototypes (the code for a function) and
closures

@ Lablua

A quick tour of the core (3)

ldebug. c has the functions of the debug API, and their support functions

lgc.c is the garbage collector, managing the memory used by Lua and freeing
memory when it is not used anymore

ldump.c and lundump.c handle VM instruction serialization and deserialization

lparser.c and lcode. c are the recursive descent parser and the code
generator for the Lua compiler

« 11lex.c is the scanner for the compiler; the scanner and deserializer both use
the stream interface in 1zio. c to get the bytes they need

@ Lablua

The Lua scanner

« Lua has a simple lexical structure, and uses a hand-written scanner

« The scanner itself has some complexity due to it having to interface with the
stream interface, the memory manager, and the string table

* We do not actually need to change the source code for the scanner to do some
simple changes

« We have some simple hooks into the scanner in the form of 1is* macros that it
uses to classify a byte as a digit, alphabetic, alphanumeric, or space character

UTF-8 identifiers

« We can use the hooks in to the scanner to add support for UTF-8 identifiers

« We just change the definitions of some of the macros in 1ctype.h:

/*all utf-8 chars are always alphabetic character (everthing higher then
277 is always a valid char), end of stream (-1) is not valid */

#define lislalpha(c) (((0x80&c)||isalpha(c))&&c!=-1)

/*all utf-8 chars are always alphabetic character or numbers, end of
stream (-1) is not valid*/

#define lislalnum(c) (((@x80&c)||isalnum(c))&&c!=-1) function f=HK()
local n =0

return function ()
n=n+1
return n
end
end

e = IRER()

print(IH#&s()) -- 1
print(IT#=s()) -- 2

print(IH#&s()) -- 3

@ Lablua

The Lua parser

« Lua uses a hand-written recursive parser; basically, each grammar rule
corresponds to a function in the parser, beginning with statlist for a list of
statements

« But the parser is greatly complicated by the fact that the parser is generating
code as it goes, instead of first building an intermediate representation

* The exception Is the expression parser, a precedence climbing parser that
generates an abstract syntax tree for expressions

« The code generator for expressions traverses this tree

Values

@ Lablua

 Lua values are tagged unions: a structure containing a tag for the value (the
type plus some bookkeeping information for the VM) and an union with fields for

each kind of value:

union Value {

—r GCObject *gc; /*
void *p; /*
int b; /*
lua_CFunction f; /*
numfield /*

s

collectable objects */
light userdata */
booleans */

light C functions */
numbers */

« GCObjects are strings, tables, functions, threads, and userdata, all types that
have memory managed by the Lua garbage collector

* Plus some internal values that the VM uses: upvalues and prototypes

@ Lablua

GCODbjects

« The common header is duplicated in all of the different GCObject parts, and is
bookkeeping information for the garbage collector:

union GCObject {
GCheader gch; /* common header */
union TString ts;
union Udata u;
union Closure cl;
struct Table h;
struct Proto p;
struct UpVal uv;
struct lua_State th; /* thread */

s

* Notice that threads are just Lua states; the difference is that they have a link to,
and share global variables with, their parent Lua state

Tables

« Tables have an array part and a hash part (the array of nodes in node, below):

typedef struct Table {
CommonHeader;
lu byte flags; /* 1<<p means tagmethod(p) is not present */
lu byte l1lsizenode; /* log2 of size of "node' array */
struct Table *metatable;
TValue *array; /* array part */
Node *node;
Node *lastfree; /* any free position is before this position */
GCObject *gclist;
int sizearray; /* size of "array' array */

} Table;

* Notice that the fact that a metatable must be another table is fixed in the
Implementation

@ Lablua

Tables — hash part

« Each node in the hash part has a key, a value, and a link that is used for
collision resolution in the hash table

 Lua uses a has algorithm that can handle a close to full table quite well, so the
hash table only grows when it runs out of space

« Each time the hash part grows it doubles in size

A (

RS O

@ Lablua

Tables — array part

 Lua tries to keep as many values with integer keys as it can in the array part of
the table, without wasting much space

« Each time the table rehashes, Lua sets the array part to size n, where n:
* |Is a power of 2
« Containts at least n/2 values in the interval [1,n], that is, is at least half full
« Has at least one value in [n/2 + 1, n], that is, it is hot wasting the upper half

* Rehashing is an expensive operation, but the doubling in size of each part
makes it infrequent

@ Lablua

Virtual Machine

« Lua has a register-based virtual machine

/\’

« Each Lua function gets a number of virtual registers; it will have one for each
argument, usually one for each local variable, and how many it may need to
keep temporary values

« Makes for very compact code, and a large number of virtual registers simplifies
code generation, there is no need for “register allocation” in the Lua compiler

« Instructions can take up to three registers, although some of them operate on
ranges of registers

« The second and third operands can also be constants, which are indexes on an
array of literals that each function has

@ Lablua

Examples

* In the instructions below, registers are given by Rn, where n is the register
number, and numbers are indexes in the array of constants:

ADD RO RO 3 / DL§<O

DIV RO 3 RO

GETTABLE R@ R1®
SETTABLE RL 4 v C V| L%{‘WG«Q§

+ If we assume that R@ is the local variable a, R1 is the local variable t, constant 3
IS the number 1, and constant 4 is the string “x”’, then the above corresponds to

the Lua code:™ <
a =a+ 1tf\

a = % / a

a =(t.

t.x = a

« Sometimes the second and third operands are neither registers nor constants;

the “register” is just an integer: NEWTABL@ RO RO ; t = {}

'

@ Lablua

“Large” operands and tests

« A second instruction format takes just two operands, where the second can be a
large number (usually for a jump offset, but it can also be an index in the array
of literals):

—9 LOADK RO 1000 ; assigns literal with index 1000 to the first register
JMP RO ; jumps backwards (ignores the first operand)

» Tests have a dummy first argument that is either RO or R1 and gives the
“polarity” of the test; RO makes it skip the jump if the test succeeds, and R1
makes it skip the jump if the test fails:

/{LT @ ; if @the@elsq‘@end

JMP RO 2 ;5 jumps 3 instructions ahead
~9SUB RO RO 3
JMP RO 1 5 jumps 2 instructions ahead

ADD RO RO 3

@ Lablua

Protypes and closures

« The Lua compiler produces a prototype for each function

« The prototype has the instructions for the function, and metadata used by the
virtual machine:

 How many registers the function uses

* |n which source file and at which line the function comes from

« Which local variables from outside its scope the function uses

« A function declaration becomes a CLOSURE instruction, which creates a closure
from the prototype

@ Lablua

Creating a closure

 When the virtual machine creates a closure, it uses the list of external variables
to fill the closure’s display
~—— X

* The display is an array of upvalues, one for each external variable the function
uses

« Upvalues may be@ or closed; an open upvalue means that the variable is
still in scope, and points the the location of the variable in the stack

A closed upvalue means the variable has gone out of scope, and now holds the
value the variable had

@ Lablua

Closures and sharing

« Two or more closures may share a local variable, so each variable must have at
most just one open upvalue pointing to it

Lua keeps the implementation simple by maitaining a linked list of open
upvalues, and searching this list each time it needs to create a closure

If no open upvalue for a variable is found, Lua creates one and adds it to the list

When an upvalue is closed it is removed from the list

Each time a block goes out of scope the Lua compiler generates code to close
any open upvalues in it, using the first argument of the JMP instruction

Lua assembler/disassembler

* luaa.lua and luad. lua are two Lua scripts that let us experiment with
programming directly to the Lua VM

 One is an assembler, to turn textual instructions into executable code, and the
other is a disassembler, to turn Lua code into textual instructions:

$ lua luad.lua -o test.asm test.lua -- test.lua
$ cat test.asm local a = 5
function main(0): if a < 1 then
.upvalue ENV, 1, © a=a-1
1 [1] LOADK RO, 5 else
2 [2] LT 0, RO, 1 a=a+1
3 [2] JMP RO, 6 end
4 [3] SUB RO, RO, 1
5 [3] JMP RO, 7
6 [5] ADD RO, RO, 1
7 [6] RETURN RO, 1

@ Lablua

Assembler syntax

« Each function declaration in the assembler listing actually declares a prototype;
the main function is the main chunk of the script, and in parentheses we have
the number of explicit arguments that the function takes (not counting .. .)

« The disassembler embeds literals directly in instructions that can have them as
operands, and fills out the necessary literal array

* In the same way, the assembler figures out how many registers the function
uses

 Finally, jumps are absolute instead of relative, and can be done to symbolic
labels, the assembler turns both into offsets

Upvalues

@Lablua

e language ressarl

« We have to list the upvalues that the closure will have with .upvalue clauses;
we give the name of the upvalue, O if it comes from an upvalue of the enclosing

function, or 1 if it comes from a register, and either the upvalue index in the
enclosing function’s closure or the register

function counter(9):
loadk ro, ©
closure rl1, anon
return rl, 2

function anon(0):
.upvalue n, 1, ©
getupval ro, 0
add ro, ro, 1
setupval 0, ro
getupval 0, ro
return ro, 2

> YEs,

this is backwards!

local function counter()
local n = 0
return function ()

nN=n+1
return n
end

end

Globals

» Global variables are actually fields in a table usually stored in upvalue O:

function main(0): local function hello()
.upvalue ENV, 1, © n=n+1
closure re, hello print("hello world", n)
settabup 0, "n", 5 end
move rl, ro
call r1, 1, 1 n=>5
return ro, 1 hello()

function hello(9):
[:Rgpvalue “ENV, 0, ©
gettabup ro, 0, "n"
add ro, ro, 1
settabup 0, "n", re
loadk r1, "hello world"
gettabup r2, 0, "n"
call ro, 3, 1

return ro, 1

@ Lablua

Quiz

« What Lua code corresponds to the instructions below, assuming that Re is the
local variable t, R1 the local variable | and R2 the local variable x?

NEWTABLE Re R® RO ——\, j(. 2\)

SETTABLE

GETTABLE&% NN x { ><j :)C

L=+ 9)

