
Programming in Lua – The Lua Implementation

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Navigating the source

• The source code for Lua 5.2 is online at http://www.lua.org/source/5.2/

• Includes lists the three include files that external libraries use, plus luaconf.h,

for compile-time configuratio of Lua

• Core lists the files that implement the Lua compiler and virtual machine

• Libraries is the code for the built-in functions and modules of the standard

library, all implemented in terms of the C API

• Interpreter is actually just the REPL, the hard work is done by the core; the

REPL just uses API functions!

• Compiler is also just a shell around the actual compiler that is in the core

http://www.lua.org/source/5.2/

A quick tour of the core

• lapi.c implements the C API (functions with lua_ prefix); the luaL_ API

functions are actually in lauxlib.c!

• lobject.h has the representation of Lua values

• lstate.h has the (internal) representation of Lua states, private to the core

• lopcodes.h has the instruction format and the list of instructions for the virtual

machine

• lvm.c is the core of the virtual machine, with its execution loop (in

luaV_execute) and some support functions

A quick tour of the core (2)

• ldo.c implements function calls and the management of the call stack and the

value stack, as well as error handling

• lstring.c manages the “string table”, where Lua keeps a canonical copy of

each string; the actual string values are just pointers to entries in this table

• ltable.c is the implementation of tables, and has the logic for handling the

table’s array and hash parts, and resizing

• ltm.c has a few functions to fetch metamethods (they were called tag methods

prior to Lua 5.0)

• lfunc.c has a few functions to handle prototypes (the code for a function) and

closures

A quick tour of the core (3)

• ldebug.c has the functions of the debug API, and their support functions

• lgc.c is the garbage collector, managing the memory used by Lua and freeing

memory when it is not used anymore

• ldump.c and lundump.c handle VM instruction serialization and deserialization

• lparser.c and lcode.c are the recursive descent parser and the code

generator for the Lua compiler

• llex.c is the scanner for the compiler; the scanner and deserializer both use

the stream interface in lzio.c to get the bytes they need

The Lua scanner

• Lua has a simple lexical structure, and uses a hand-written scanner

• The scanner itself has some complexity due to it having to interface with the

stream interface, the memory manager, and the string table

• We do not actually need to change the source code for the scanner to do some

simple changes

• We have some simple hooks into the scanner in the form of lis* macros that it

uses to classify a byte as a digit, alphabetic, alphanumeric, or space character

UTF-8 identifiers

• We can use the hooks in to the scanner to add support for UTF-8 identifiers

• We just change the definitions of some of the macros in lctype.h:

/*all utf-8 chars are always alphabetic character (everthing higher then
2^7 is always a valid char), end of stream (-1) is not valid */

#define lislalpha(c) (((0x80&c)||isalpha(c))&&c!=-1)
/*all utf-8 chars are always alphabetic character or numbers, end of
stream (-1) is not valid*/

#define lislalnum(c) (((0x80&c)||isalnum(c))&&c!=-1) function 提出反()
local n = 0
return function ()

n = n + 1
return n

end
end

计数器 = 提出反()
print(计数器()) -- 1
print(计数器()) -- 2
print(计数器()) -- 3

The Lua parser

• Lua uses a hand-written recursive parser; basically, each grammar rule

corresponds to a function in the parser, beginning with statlist for a list of

statements

• But the parser is greatly complicated by the fact that the parser is generating

code as it goes, instead of first building an intermediate representation

• The exception is the expression parser, a precedence climbing parser that

generates an abstract syntax tree for expressions

• The code generator for expressions traverses this tree

Values

• Lua values are tagged unions: a structure containing a tag for the value (the

type plus some bookkeeping information for the VM) and an union with fields for

each kind of value:

• GCObjects are strings, tables, functions, threads, and userdata; all types that

have memory managed by the Lua garbage collector

• Plus some internal values that the VM uses: upvalues and prototypes

union Value {
GCObject *gc; /* collectable objects */
void *p; /* light userdata */
int b; /* booleans */
lua_CFunction f; /* light C functions */
numfield /* numbers */

};

GCObjects

• The common header is duplicated in all of the different GCObject parts, and is

bookkeeping information for the garbage collector:

• Notice that threads are just Lua states; the difference is that they have a link to,

and share global variables with, their parent Lua state

union GCObject {
GCheader gch; /* common header */
union TString ts;
union Udata u;
union Closure cl;
struct Table h;
struct Proto p;
struct UpVal uv;
struct lua_State th; /* thread */

};

Tables

• Tables have an array part and a hash part (the array of nodes in node, below):

• Notice that the fact that a metatable must be another table is fixed in the

implementation

typedef struct Table {
CommonHeader;
lu_byte flags; /* 1<<p means tagmethod(p) is not present */
lu_byte lsizenode; /* log2 of size of `node' array */
struct Table *metatable;
TValue *array; /* array part */
Node *node;
Node *lastfree; /* any free position is before this position */
GCObject *gclist;
int sizearray; /* size of `array' array */

} Table;

Tables – hash part

• Each node in the hash part has a key, a value, and a link that is used for

collision resolution in the hash table

• Lua uses a has algorithm that can handle a close to full table quite well, so the

hash table only grows when it runs out of space

• Each time the hash part grows it doubles in size

Tables – array part

• Lua tries to keep as many values with integer keys as it can in the array part of

the table, without wasting much space

• Each time the table rehashes, Lua sets the array part to size n, where n:

• Is a power of 2

• Containts at least n/2 values in the interval [1,n], that is, is at least half full

• Has at least one value in [n/2 + 1, n], that is, it is not wasting the upper half

• Rehashing is an expensive operation, but the doubling in size of each part

makes it infrequent

Virtual Machine

• Lua has a register-based virtual machine

• Each Lua function gets a number of virtual registers; it will have one for each

argument, usually one for each local variable, and how many it may need to

keep temporary values

• Makes for very compact code, and a large number of virtual registers simplifies

code generation, there is no need for “register allocation” in the Lua compiler

• Instructions can take up to three registers, although some of them operate on

ranges of registers

• The second and third operands can also be constants, which are indexes on an

array of literals that each function has

Examples

• In the instructions below, registers are given by Rn, where n is the register

number, and numbers are indexes in the array of constants:

• If we assume that R0 is the local variable a, R1 is the local variable t, constant 3
is the number 1, and constant 4 is the string “x”, then the above corresponds to

the Lua code:

• Sometimes the second and third operands are neither registers nor constants;

the “register” is just an integer:

ADD R0 R0 3
DIV R0 3 R0
GETTABLE R0 R1 4
SETTABLE R0 R1 4

a = a + 1
a = 1 / a
a = t.x
t.x = a

NEWTABLE R1 R0 R0 ; t = {}

“Large” operands and tests

• A second instruction format takes just two operands, where the second can be a

large number (usually for a jump offset, but it can also be an index in the array

of literals):

• Tests have a dummy first argument that is either R0 or R1 and gives the

“polarity” of the test; R0 makes it skip the jump if the test succeeds, and R1

makes it skip the jump if the test fails:

LOADK R0 1000 ; assigns literal with index 1000 to the first register
JMP R0 -500 ; jumps backwards (ignores the first operand)

LT R0 R0 3 ; if a < 1 then a = a – 1 else a = a + 1 end
JMP R0 2 ; jumps 3 instructions ahead
SUB R0 R0 3
JMP R0 1 ; jumps 2 instructions ahead
ADD R0 R0 3

Protypes and closures

• The Lua compiler produces a prototype for each function

• The prototype has the instructions for the function, and metadata used by the

virtual machine:

• How many registers the function uses

• In which source file and at which line the function comes from

• Which local variables from outside its scope the function uses

• A function declaration becomes a CLOSURE instruction, which creates a closure

from the prototype

Creating a closure

• When the virtual machine creates a closure, it uses the list of external variables

to fill the closure’s display

• The display is an array of upvalues, one for each external variable the function

uses

• Upvalues may be open or closed; an open upvalue means that the variable is

still in scope, and points the the location of the variable in the stack

• A closed upvalue means the variable has gone out of scope, and now holds the

value the variable had

Closures and sharing

• Two or more closures may share a local variable, so each variable must have at

most just one open upvalue pointing to it

• Lua keeps the implementation simple by maitaining a linked list of open

upvalues, and searching this list each time it needs to create a closure

• If no open upvalue for a variable is found, Lua creates one and adds it to the list

• When an upvalue is closed it is removed from the list

• Each time a block goes out of scope the Lua compiler generates code to close

any open upvalues in it, using the first argument of the JMP instruction

Lua assembler/disassembler

• luaa.lua and luad.lua are two Lua scripts that let us experiment with

programming directly to the Lua VM

• One is an assembler, to turn textual instructions into executable code, and the

other is a disassembler, to turn Lua code into textual instructions:

$ lua luad.lua –o test.asm test.lua
$ cat test.asm
function main(0):

.upvalue _ENV, 1, 0
1 [1] LOADK R0, 5
2 [2] LT 0, R0, 1
3 [2] JMP R0, 6
4 [3] SUB R0, R0, 1
5 [3] JMP R0, 7
6 [5] ADD R0, R0, 1
7 [6] RETURN R0, 1

-- test.lua
local a = 5
if a < 1 then
a = a - 1

else
a = a + 1

end

Assembler syntax

• Each function declaration in the assembler listing actually declares a prototype;

the main function is the main chunk of the script, and in parentheses we have

the number of explicit arguments that the function takes (not counting ...)

• The disassembler embeds literals directly in instructions that can have them as

operands, and fills out the necessary literal array

• In the same way, the assembler figures out how many registers the function

uses

• Finally, jumps are absolute instead of relative, and can be done to symbolic

labels, the assembler turns both into offsets

Upvalues

• We have to list the upvalues that the closure will have with .upvalue clauses;

we give the name of the upvalue, 0 if it comes from an upvalue of the enclosing

function, or 1 if it comes from a register, and either the upvalue index in the

enclosing function’s closure or the register

function counter(0):
loadk r0, 0
closure r1, anon
return r1, 2

function anon(0):
.upvalue n, 1, 0
getupval r0, 0
add r0, r0, 1
setupval 0, r0 ; yes, this is backwards!
getupval 0, r0
return r0, 2

local function counter()
local n = 0
return function ()

n = n + 1
return n

end
end

Globals

• Global variables are actually fields in a table usually stored in upvalue 0:

function main(0):
.upvalue _ENV, 1, 0
closure r0, hello
settabup 0, "n", 5
move r1, r0
call r1, 1, 1
return r0, 1

function hello(0):
.upvalue _ENV, 0, 0
gettabup r0, 0, "n"
add r0, r0, 1
settabup 0, "n", r0
gettabup r0, 0, "print"
loadk r1, "hello world"
gettabup r2, 0, "n"
call r0, 3, 1
return r0, 1

local function hello()
n = n + 1
print("hello world", n)

end

n = 5
hello()

Quiz

• What Lua code corresponds to the instructions below, assuming that R0 is the

local variable t, R1 the local variable I and R2 the local variable x?

NEWTABLE R0 R0 R0
SETTABLE R0 R1 R2
GETTABLE R1 R0 R1

