
Programming in Lua – User-defined types

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Exposing data

• We have seen how to expose C functions to Lua

• But C libraries do not have just functions, they usually also define complex data

structures, and their functions operate on these data structures

• We need a way to pass these data structures to Lua code, and get them back

• One possible way would be to marshall these data structures to Lua data

structures, such as strings or tables, but doing this marshalling and

unmarshalling anytime we call C and come back would be expensive!

• Fortunately, C functions can pass opaque pointers and binary blobs to Lua and

get them back with no marshalling/unmarshalling, with userdata

Bit vectors

• Suppose we have a library for bit vectors for representing boolean arrays

efficiently, this library has the following interface (bv.h):

• The library does not do bounds-checking, this is the responsibility of the caller;

we want to expose the following interface to Lua code:

• The Lua API will be bounds-checked, and throw errors for out-of-bound access

typedef struct BitVector BitVector;
int bv_bytes (int n); /* size needed for a bitvector of n elements */
void bv_set (BitVector *bv, int i, int b);
void bv_clear (BitVector *bv);
int bv_get (BitVector *bv, int i);
/* sets and gets length of bit vector, so users can do bounds checking */
void bv_setn (BitVector *bv, int n);
int bv_getn (BitVector *bv);

v = bv.new(n) -- create bit vector of n elements
bv.set(v, i, b) -- set ith element to truth val of b
b = bv.get(v, i) -- get boolean val of ith element
n = bv.len(v) -- get length of bit vector

Userdata

• Function bv.new must allocate a new bit vector, and return it to Lua after setting

the length so the other functions can do bounds-checking, and clearing the

vector

• lua_newuserdata allocates a block of memory, pushes an userdata for this

block, and returns the address of the block:

• We just need to register this function as new in our bv module

static int newbv(lua_State *L) {
int i; BitVector *bv;
int n = luaL_checkinteger(L, 1);
luaL_argcheck(L, n >= 1, 1, "size must be positive");
bv = (BitVector*)lua_newuserdata(L, bv_bytes(n));
bv_setn(bv, n);
bv_clear(bv);
return 1;

}

Back from Lua

• The other functions in our bv library take the bit vector userdata as the first

argument; we can use the lua_touserdata function to take them out of the

stack:

• Again we use luaL_argcheck, now to do bounds checking; lua_toboolean
works with any Lua value, so we just need to check for the presence of a third

argument with luaL_checkany

static int setbv(lua_State *L) {
BitVector *bv = (BitVector*)lua_touserdata(L, 1);
int i = luaL_checkinteger(L, 2) - 1;
int n = bv_getn(bv);
luaL_argcheck(L, 0 <= i && i < n, 2, "index out of range");
luaL_checkany(L, 3);
bv_set(bv, i, lua_toboolean(L, 3));
return 0;

}

Safety

• The memory we allocate for userdata is managed by Lua, so we do not need to

free it; Lua’s garbage collector takes care of it

• But our implementation is unsafe in another way: there is no checking to see if

the user has actually passed a valid bit vector as a first argument

• If the user does not pass an userdata lua_touserdata returns NULL, and we

could check for that

• But other libraries produce their own userdata, and our code will happily corrupt

them

• We need a way to tag an userdata so our module can check to see if it is a bit

vector or not

Metatables

• Userdata can have metatables, too, so we will tag our bit vector userdata with a

shared metatable that we will keep in the registry

• The Lua API has three convenience functions to access these metatables:

• Lua uses name as the registry key for the metatable, so prefix it with the module

name

• Function lua_setmetatable(L, i) pops a table from the stack and sets it as

the metatable of the value at index i (a table or userdata)

/* creates an empty metatable, pushes it and adds to the registry */
int luaL_newmetatable(lua_State *L, const char *name);
/* pushes the metatable from the registry */
void luaL_getmetatable(lua_State *L, const char *name);
/* checks if the value at stack index i is an userdata with correct metatable */
void *lua_checkudata (lua_State *L, int index, const char *name);

Safe bit vectors

• To tag our bit vectors, we need to create the metatable when loading the

module:

• When we create the userdata for a new bit vector, we need to tag it, changing

the end of newbv to:

• Finally, we change the other functions to use luaL_checkudata instead of

lua_touserdata:

int luaopen_bv(lua_State *L) {
luaL_newmetatable(L, "bv.mt");
luaL_newlib(L, bv);
return 1;

}

luaL_getmetatable(L, "bv.mt");
lua_setmetatable(L, -2);
return 1;

BitVector *bv = (BitVector*)luaL_checkudata(L, 1, "bv.mt");

Userdata objects

• Now that we have a metatable, we can add metamethods to it; we can decide

what kind of interface we want: v:get(i), v:set(i, b), and v:len(), or

v[i], v[i] = b, and #v

• For the first one, we can point __index to the metatable itself, as we did for

classes, and then add the get, set, and len functions to the metatable:

• We do not need to change the setbv, getbv, or lenbv functions, as they

already take the userdata as the first parameter

static const struct luaL_Reg bv_m[] = {
{"set", setbv}, {"get", getbv}, {"len", lenbv}, {NULL, NULL}

};
int luaopen_bv(lua_State *L) {

luaL_newmetatable(L, "bv.mt");
lua_pushvalue(L, -1);
lua_setfield(L, -2, "__index");
luaL_setfuncs(L, bt_m, 0);
luaL_newlib(L, bv);
return 1;

}

v:get(5) -> v.get(v, 5) ->
getmetatable(v).__index.get(v, 5) ->
bv.get(v, 5)

Userdata objects (2)

• For the second interface, we can just set the __index metamethod to getbv,

__newindex to setbv, and __len to lenbv:

• Using luaL_setfuncs to initialize the metatable is straightforward:

v[5] -> getmetatable(v).__index(v, 5) -> bv.get(v, 5)
v[5] = true -> getmetatable(v).__newindex(v, 5, true) -> bv.set(v, 5, true)
#v -> getmetatable(v).__len(v) -> bv.len(v)

static const struct luaL_Reg bv_m[] = {
{"__newindex", setbv}, {"__index", getbv}, {"__len", lenbv}, {NULL, NULL}

};
int luaopen_bv(lua_State *L) {

luaL_newmetatable(L, "bv.mt");
luaL_setfuncs(L, bt_m, 0);
luaL_newlib(L, bv);
return 1;

}

External resources

• Suppose the bit vector library manages its own memory, exposing the following

interface:

• Now bv_new allocates a cleared bit vector, and sets is length; when the user is

done with the bit vector he should call bv_free to reclaim its space

• How do we expose these bit vectors to Lua?

typedef struct BitVector BitVector;
BitVector *bv_new (int n);
void bv_free(BitVector *bv);
void bv_set (BitVector *bv, int i, int b);
void bv_clear (BitVector *bv);
int bv_get (BitVector *bv, int i);
int bv_getn(BitVector *bv);

Indirect userdata

• The userdata for bit vectors can be pointers to the bit vectors, instead of the bit

vectors themselves:

• The other functions need to deal with the extra level of indirection:

static int newbv(lua_State *L) {
int i; BitVector **ud;
int n = luaL_checkinteger(L, 1);
luaL_argcheck(L, n >= 1, 1, "size must be positive");
ud = (BitVector**)lua_newuserdata(L, sizeof(BitVector*));
*ud = bv_new(n);
luaL_getmetatable(L, "bv.mt");
lua_setmetatable(L, -2);
return 1;

}

BitVector *bv = *((BitVector**)luaL_checkudata(L, 1, "bv.mt"));

Finalizers

• There is still a problem: when should we call bv_free? The memory for storing

the pointer is managed by Lua, but the bit vector itself is not

• To solve this, Lua has finalizers: a finalizer is a __gc metamethod in a userdata

(in Lua 5.2 tables can have finalizers, too)

• Lua calls this metamethod just before garbage-collecting the userdata, passing

the userdata to it; we just need to connect the __gc metamethod to a function

that will call bv_free:

static int gcbv(lua_State *L) {
BitVector *bv = *((BitVector**)luaL_checkudata(L, 1, "bv.mt"));
bv_free(bv);

}

Quiz

• Suppose the bit vector library we are exposing to Lua did not have the bv_setn
and bv_getn functions; how could we implement bounds checking in our C

module?

