
Programming in Lua – Objects

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Methods and :

• In most object oriented languages, a method has an implicit receiver, usually

called self or this, in addition to its regular parameters

• In Lua, a method is just a function that takes the receiver as the first parameter,

and the user is free to call it what it wants

• Indexing a Lua object with the name of the method returns it, and we can then

call the method:

• To avoid stating the receiver twice, Lua has the colon operator:

• This operator adds the receiver as an extra first parameter to the function call;

the receiver (on the left of :) can be any expression, and it is evaluated only

once, but the method name must be a valid identifier

> obj.method(obj, <other arguments>)

> obj:method(<other arguments>)

Declaring methods

• We can also use the colon to declare a method, the effect is the same as

assigning a function with an extra self parameter:

• We can now declare a simple square object:

function obj:method(<other arguments>)
<code of the method>

end

function obj.method(self, <other arguments>)
<code of the method>

end

local square = { x = 10, y = 20, side = 25 }

function square:move(dx, dy)
self.x = self.x + dx
self.y = self.y + dy

end

function square:area()
return self.side * self.side

end

return square

> print(square:area())
625
> square:move(10, -5)
> print(square.x, square.y)
20 15

Classes

• The methods we added to square work with any table that has x, y, and side
fields:

• We can put these methods in a Square class, a prototype for objects like

square and square2, and also put a new method in Square to create new

instances

• These instances have values for their x, y, and fields, and metatable with an

__index metamethod pointing to Square

> square2 = { x = 30, y = 5, side = 10 }
> print(square.area(square2))
100
> square.move(square2, 10, 10)
> print(square2.x, square2.y)
40 15

Square

• This is one way the Square class can look like, as a module:

local Square = {}
Square.__index = Square

function Square:new(x, y, side)
return setmetatable({ x = x, y = y, side = side }, self)

end

function Square:move(dx, dy)
self.x = self.x + dx
self.y = self.y + dy

end

function Square:area()
return self.side * self.side

end

return Square

> s1 = Square:new(10, 5, 10)
> s2 = Square:new(20, 10, 25)
> print(s1:area(), s2:area())
100 625
> s1:move(5, 10)
> print(s1.x, s1.y)
15 15

Default fields

• If we add other fields to Square, they will be default values for the fields of the

instances:

• If we read the field we will get the default value from the class:

• If we set it, the field is now set in the instance, but does not affect other

instances:

local Square = { color = "blue" }

> s1 = Square:new(10, 5, 10)
> print(s1.color)
blue

> s1.color = "red"
> print(s1.color)
red
> s2 = Square:new(20, 10, 25)
> print(s2.color)
blue

Circle

• Let us create another class, Circle:

• The move method is identical to Square’s!

local Circle = {}
Circle.__index = Circle

function Circle:new(x, y, radius)
return setmetatable({ x = x, y = y, radius = radius }, self)

end

function Circle:move(dx, dy)
self.x = self.x + dx
self.y = self.y + dy

end

function Circle:area()
return math.pi * self.radius * self.radius

end

return Circle

Shape

• We may want to factor the common parts out to a Shape class:

• The metatable of an instance is a class; the metatable of a class will be its

superclass

local Shape = {}
Shape.__index = Shape

function Shape:new(x, y)
return setmetatable({ x = x, y = y }, self)

end

function Shape:move(dx, dy)
self.x = self.x + dx
self.y = self.y + dy

end

return Shape

Point extends Shape

• Points are simple shapes with just their coordinates, and their area is 0:

• The setmetatable call while defining the new class makes it inherit the

methods of Shape, including its “constructor”

local Shape = require "shape"
local Point = setmetatable({}, Shape)
Point.__index = Point

function Point:area()
return 0

end

return Point

> p = Point:new(10, 20)
> print(p:area())
0
> p:move(-5, 10)
> print(p.x, p.y)
5 30

Circle extends Shape

• We will need to override the constructor in class Circle, but can call Shape’s

constructor to do part of the work:

local Shape = require "shape"
local Circle = setmetatable({}, Shape)
Circle.__index = Circle

function Circle:new(x, y, radius)
local shape = Shape.new(self, x, y)
shape.radius = radius
return shape

end

function Circle:area()
return math.pi * self.radius * self.radius

end

return Circle

> c = Circle:new(10, 20, 5)
> c:move(5, -5)
> print(c.x, c.y)
15 15
> print(c:area())
78.539816339745

We can use the same trick to

call the “super” method in

other overriden methods

Other object models

• This is just one way of implementing objects in Lua

• It has the disadvantage of putting “class methods” (new) and “instance methods”

(move, area) in the same namespace

• Other metamethods are not inherited; for example, if we want to connect

__tostring with a tostring method that can be easily overriden we need to

explictly set Class.__tostring = Class.tostring for each class

• But this object model is simple! More sophisticated object models can be

defined as libraries, and it is easy to make them work with the : operator for

method calls

Quiz

• With our object model, how could we check whether an object is an instance of

a class? What about checking whether an object is an instance of a class or

one of its subclasses?

instanceof

