
Programming in Lua – Modules

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua


Modules

• Until now we have been working on the REPL and in the context of a single 

script

• We also have been using just built-in functions such as ipairs and 

table.concat

• But most applications will not fit in a single script, and will not use only the built-

in functions

• Modules solve both the code organization and the code reuse problems; a 

module is a reusable group of related functions and data structures



Modules are tables

• A Lua module is a piece of code that creates and returns a table; this table has 

all of the functions and data structures that the module exports

• The Lua standard library defines several modules: table, io, string, math, os, 

coroutine, package, and debug

• As a convenience, these modules are preloaded into global variables of the 

same name

• An application loads a module with the require built-in function; it takes the 

name of the module, and returns the module itself

• The application must assign the module to a variable, require does not set any 

global variables



A simple module

• A module is a Lua script that returns a table when executed; as an example, let 

us create the stub of a simple module for complex numbers, and save it in a 

“complex.lua” file in the path where we are running our REPL:

local M = {}

function M.new(r, i)
return { real = r or 0, im = i or 0 }

end

M.i = M.new(0, 1)

function M.add(c1, c2)
return M.new(c1.real + c2.real, c1.im + c2.im)

end

function M.tostring(c)
return tostring(c.real) .. "+" .. tostring(c.im) .. "i"

end

return M



Another style

• We can define the same module in a slightly different style:

• This style has better performance, but more duplication; it is a matter of taste

local function new(r, i)
return { real = r or 0, im = i or 0 }

end

local i = new(0, 1)

local function add(c1, c2)
return new(c1.real + c2.real, c1.im + c2.im)

end

local function tos(c)
return tostring(c.real) .. "+" .. tostring(c.im) .. "i"

end

return { new = new, i = i, add = add, tostring = tos }



Loading complex

• We can load our new module in the REPL:

• If we call require again we get the cached module:

• If we want to force the module to be reloaded we can remove it from the cache:

> complex = require "complex"
> print(complex)
table: 0000000000439820

> print(require "complex")
table: 0000000000439820

> package.loaded.complex = nil
> complex = require "complex"
> print(complex)
table: 000000000042F8F0



Using the module

• Once we have loaded the module an assigned it to a variable, we can use 

anything it exports:

• A module is just a table, so we could assign to its fields, but this is definitely bad 

programming style!

> c1 = complex.new(1, 2)
> print(complex.tostring(c1))
1+2i
> c2 = complex.add(c1, complex.new(10,2))
> print(complex.tostring(c2))
11+4i
> c3 = complex.add(c2, complex.i)
> print(complex.tostring(c3))
11+5i



Search path

• Where does require go to find the module? It uses a search path in the 

package.path variable:

• The search path is naturally system-dependent, and comes from the 

LUA_PATH_5_2 environment variable, if defined, or the LUA_PATH environment 

variable, or a pre-compiled default

• Lua replaces ;; in the environment variables by the pre-compiled default

• The search path is a list of templates separated by semicolons; require tries 

each template in turn, replacing ? by the module name

> print(package.path)
/usr/local/share/lua/5.2/?.lua;/usr/local/share/lua/5.2/?/init.lua;/usr/local/li
b/lua/5.2/?.lua;/usr/local/lib/lua/5.2/?/init.lua;./?.lua



Searching for complex

• For the search path in the previous slide, require will try to load the following 

paths:

• We have put complex.lua in the current path, so the last one succeeds

• If you are in doubt of which file will be loaded, you can use the 

package.searchpath built-in function:

/usr/local/share/lua/5.2/complex.lua
/usr/local/share/lua/5.2/complex/init.lua
/usr/local/lib/lua/5.2/complex.lua
/usr/local/lib/lua/5.2/complex/init.lua
./complex.lua

> print(package.searchpath("complex", package.path))
.\complex.lua



Conflicts

• Module names can be pretty common, and, if there is no other namespacing

mehanism, conflicts are bound to occur

• Suppose we want to have two complex.lua modules in our system, maybe 

because they mean different things, or are different implementations of the 

same thing, each with different trade-offs

• We can put each one in its own package, or its own folder

• We will put the first one under adts/complex.lua, and the second one 

under numlua/complex.lua”

• We can require adts.complex to get the first one, and numlua.complex to get 

the second



Packages

• Lua replaces each dot in the module name with the path separator for the 

platform to get a fully-qualified name that it replaces on the templates of the 

search path

• We can see this with package.searchpath:

> print(package.searchpath("adts.numbers.complex", package.path))
nil

no file '/usr/local/share/lua/5.2/adts/numbers/complex.lua'
no file '/usr/local/share/lua/5.2/adts/numbers/complex/init.lua'
no file '/usr/local/lib/lua/5.2/adts/numbers/complex.lua'
no file '/usr/local/lib/lua/5.2/adts/numbers/complex/init.lua'
no file './adts/numbers/complex.lua'



Quiz

• What happens in the search for a module if the search path has a fixed 

component (a template without a question mark)? Can this behavior be useful?


