
Programming in Lua – Data Structures

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Tables for everything

• Unless you resort to C code, tables are the only way to structure data in Lua

• They can represent arrays, sets, records, objects, and other data structures

efficiently, with a nice syntax

• The basic operations that a table supports are construction ({}), to make a new

table, and indexing ([]), to read/write values

• Tables are a mutable reference type, so they have the same aliasing issues as

C pointers and Java arrays and objects

> tab = {} -- make a new table assign to tab
> tab["x"] = 5 -- write 5 to “x” field
> print(tab["x"]) -- read value of “x” field and print it
5

> alias = tab
> alias["x"] = "changed"
> print(tab["x"])
changed

Arrays

• A Lua array is a table with values assigned to sequential integer keys, starting

with 1

• You can initialize an array using a table constructor with a list of expressions

inside it

• An array cannot have holes: none of the values can be nil. But you can fill the

array in any order you want, as long as you plug all the holes before using the

array

local a = {}
for i = 1, 6 do
a[i] = math.random(10)

end

-- an array like the previous one
local a = { math.random(10), math.random(10), math.random(10),

math.random(10), math.random(10), math.random(10) }

Length

• The length operator (#) gives the number of elements in an array

• You can use the length and a for loop to iterate over an array:

• The length operator is also useful for adding elements to the end of an array,

and removing the last element:

local a = { math.random(10), math.random(10), math.random(10),
math.random(10), math.random(10), math.random(10) }

for i = 1, #a do
print(a[i])

end

a[#a] = nil -- remove the last element
a[#a + 1] = math.random(10) -- add a new element to the end

Inserting, removing, sorting

• Two functions in the table module can insert and remove elements in any

position of the array (shifting the other elements to make space or plug the hole,

respectively):

• The function table.sort sorts an array (using an efficient sorting algorithm):

> a = { 1, 2, 3, 4, 5 }
> table.insert(a, 3, 10) -- insert 10 in position 3
> print_array(a)
{ 1, 2, 10, 3, 4, 5 }
> table.remove(a, 4) -- remove fourth element
> print_array(a)
{ 1, 2, 10, 4, 5 }

> a = { "Python", "Lua", "C", "JavaScript", "Java", "Lisp" }
> table.sort(a)
> print_array(a)
{ C, Java, JavaScript, Lisp, Lua, Python }

Concatenation

• The table.concat function concatenates an array of strings using an optional

separator:

• If we do not give a separator then concat uses ""

• A common idiom is to use an array of strings as a buffer, using table.concat

when we need the contents of the buffer as a single string

function print_array(a)
print("{" .. table.concat(a, ", ") .. "}")

end

Iteration with ipairs

• Another way to iterate over an array is to use the generic for loop and the

ipairs built-in function:

• This loop has two control variables, the first gets the indices, the second gets

the elements

• Usually we are only interested in the elements and not the index, so it is

common to use _ as the name of the control variable for the indices

local a = { 1, 3, 5, 7, 9 }
local sum = 0
for i, x in ipairs(a) do
print("adding element " .. i)
sum = sum + x

end
print("the sum is " .. sum)

Matrices

• One way to represent multi-dimensional arrays is with “jagged arrays”, as in

Java, where you have an array of arrays for two dimensions, an array of arrays

of arrays for three, etc.

• A more efficient way is to compose the indices using multiplication, as C does

for you:

local mt = {}
for i = 1, 3 do
mt[i] = {}
for j = 1, 5 do
mt[i][j] = 0

end
end

local mt = {}
for i = 1, 3 do
for j = 1, 5 do
mt[(i-1)*5+j] = 0

end
end

Records

• A Lua record is a table with string keys, where they keys are valid Lua

identifiers; you can initialize record fields in the table constructor by passing

key/value pairs:

• You can read and write record fields with the . operator:

• A table can be both a record and an array, and you can initialize both parts in a

single table constructor

point1 = { x = 10, y = 20 }
point2 = { x = 50, y = 5 }
line = { from = point1, to = point2, color = "blue" }

line.color = "red" -- same as line["color"] = "red"
print(line.from.x, line["color"])

Sets

• A nice way to represent sets in Lua is with a table where the keys are the

elements of the set, and the values are true

• This way, you can test membership in the set and add or remove elements to

the set by indexing

• You can initialize the set with a third table constructor syntax:

• If you replace true by a number and use it as a counter you have a multiset, or a

set that can have more than one copy of each element

-- a set of four random integers from 1 to 10
local set = { [math.random(10)] = true, [math.random(10)] = true,

[math.random(10)] = true, [math.random(10)] = true }

Iteration with pairs

• A for loop using the pairs built-in function iterates over all keys and values of a

table:

• The first control variable gets the keys, the second gets the values

• pairs does not guarantee an order of iteration, even among numeric keys; use

ipairs if you want to iterate over an array

• But pairs is great to iterate over a set, use _ as the name of the control variable

for the values, as you will not need it (unless you have a multiset, of course!)

local tab = { x = 5, y = 3, 10, "foo" }
for k, v in pairs(tab) do
print(tostring(k) .. " = " .. tostring(v))

end

Quiz

• What will be the output of the following program?

sunday = "monday"; monday = "sunday"
t = { sunday = "monday", [sunday] = monday }
print(t.sunday, t[sunday], t[t.sunday])

