
Programming in Lua – Control Flow

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

if-then-else

• An if statement executes the then chunk if the condition is true and the else
chunk if it is false

• The else chunk is optional

• Remember that the condition does not need to be a boolean value, any value

will do

if a < 0 then
print("a is negative")
a = -a

else
print("a is positive")

end

elseif

• You can use elseif instead of writing nested if statements, thus avoiding a

having to write end multiple times:

• The else part remains optional

if op == "+" then
r = a + b

elseif op == "-" then
r = a - b

elseif op == "*" then
r = a * b

elseif op == "/" then
r = a / b

else
error("invalid operation")

end

while and repeat

• A while loop keeps executing its body chunk while the condition is true; Lua

tests the condition before executing the body, so a while loop can run zero

times

• A repeat loop keeps executing its body chunk until the condition is true; Lua

tests the condition after executing the body, so a repeat loop runs at least once

i = 1; sum = 0
while i <= 5 do
sum = sum + (2 * i - 1)
i = i + 1

end
print(sum)

i = 1; sum = 0
repeat
sum = sum + (2 * i - 1)
i = i + 1

until i > 5
print(sum)

Numeric for

• A numeric for loop iterates a control variable from a starting number to an

ending number, executing the body chunk

• The control variable is local to the body, so if you need its value after the loop it

is better to use a while or repeat loop and explicitly manage the control

variable

• The control variable cannot be assigned to, either, use a break statement if you

want to terminate the loop early

sum = 0
for i = 1, 5 do
sum = sum + (2 * i - 1)

end
print(sum)

Numeric for (2)

• If you pass a third number to the numeric for, it will add this number to the

control variable after each iteration instead of 1

• You can use expressions for the starting, ending, and step values, but they are

evaluated only once before the loop starts

• A for loop can execute zero times, if the starting value is already greater than

the ending value (or lesser than in case the step is negative)

sum = 0
for i = 5, 1, -1 do
sum = sum + (2 * i - 1)

end
print(sum)

Local variables

• A local statement declares a variable that is visible from the next statement to

the end of the current chunk

• New local variables shadow variables of the same name, whether global or

local

• It is good style to use local variables whenever possible, and a common idiom

to cache the value of a global variable in a local variable of the same name

local sum = 0 -- local to the program
for i = 1, 5 do
local n = 2 * i - 1 -- local to the for body
sum = sum + n

end
print(sum, n)

do-end

• Entering the three statements of the previous slide in REPL does not do what

we want, because each will be its own chunk

• But if we surround them in a do statement it will work

• You can use a do statement to introduce new scopes without changing control

flow

sum = 0
do
local i = 1
while i <= 5 do
sum = sum + (2 * i - 1)
i = i + 1

end
end
print(sum)

Multiple assignment

• Lua can assign to several different variables in a single step with multiple

assignment

• Lua first evaluates all expressions on the right side, then does the assignments,

so you use multiple assignment to swap values

> a, b = 10, 2 * sum
> print(a, b)
10 50

> a, b = b, a
> print(a, b)
50 10

Multiple assignment (2)

• If there are more variables than values to assign, nil gets assigned to the

“extra” variables

• If there are more values than variables, the “extra” values are ignored

• Multiple assignments are very useful used in combination with functions that

return multiple values

• A local statement can declare and initialize several local variables, and it

works just like multiple assignment

> a, b, sum = 10, 2 * sum
> print(a, b, sum)
10 50 nil

Quiz

• What is the result of running the following program? Why?

local i = 5
while i do
print(i)
i = i - 1

end

