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Summary. The theory and practice of classical "top-down" parsing methods is 
presented in a tutorial manner. 

1. Introduct ion 

Since the earliest days when automatic syntax analysis by  computer was 
first a t tempted,  many  people (e.g. Barnet t  [tl ,  Brooker and Morris [2], 
Glennie, Conway I3], Schorre [4]) have used a method which has become known 
as "top-down" analysis. The idea is still popular, and it is being used in many  
current compilers. 

The methods of the authors just cited may  be described conveniently in 
terms of a little computerlike device which we shall the Parsing Machine. The 
discussion in these lectures will deal only with the syntactic properties of the top- 
down method of analysis, not with the manner in which the syntactic structure is 
la terusedto obtain semantic information about the string which is being analyzed. 
Semantic information is, of course, the real reason why syntactic analysis is done 
in the first place ; and top-down analysis is popular chiefly because it lends itself 
so conveniently to semantic extensions. However, let us accept this fact on faith, 
and concentrate only on the syntactic aspects. ]?'or further details, see the 
references cited above and [5, volume 5 and 71. 

I t  is important  to mention that  we shall be principally concerned with 
unambiguous context-free grammars,  which occur frequently in programming 
languages and in input data  formats for data-processing systems. The purpose 
of these lectures is to point out some interconnections between theory and practice, 
and to arlalyze the situations in which simple top-down syntax-oriented methods 
can be guaranteed to work. 

Section 2 introduces an abstract  machine which resembles the interpretive 
routines often used for top-down syntax analysis. Section 3 shows how BNF 
grammars  define programs for this machine in a natural  way. Section 4 examines 
the problem of proving such programs correct. 

* This paper is essentially a transscript of five expository lectures which were 
presented at the NATO International Summer School on Computer Programming, 
in Copenhagen, Denmark, August, t967. The author wishes to thank V. Tixier and 
R. Guedj for their assistance in preparing the first draft of these lecture notes. 

** The publication of this paper was supported in part by IBM Corporation. 
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Section 5 is an exposition of the basic theory of context-free grammars. 
Section 6 shows how to decide simple properties of grammars, and Section 7 gives 
graph-theoretic constructions which are useful for grammatical analysis. These 
results are applied in Section 8 to characterize all grammars for which a "no- 
backup" program for the abstract machine is valid. 

Section 9 contrasts top-down and bottom-up analysis from a theoretical 
point of view, and Section 10 gives formal definitions of LR(k) and LL(k) gram- 
mars. Section t t  shows that the LL(Q languages are precisely those readable 
without backup by the machine of Section 2. Final observations and research 
problems are stated in Section t2. 

2. The Parsing Machine (PM) 

The Parsing Machine is an abstract machine which is designed to analyze 
strings over a certain alphabet. I t  scans an" input string" one character at a time, 
from left to right, according to a program. A Parsing Machine program is made up 
of a family of procedures calling each other recursively; the program itself is one 
of these procedures. Each procedure attempts to find an occurrence of a particular 
syntactic type in the input, and it returns with the value " t rue"  or "false" 
depending on whether it has been successful or not. 

Let the input string be s 1 s~ ... s~, and let s h be the "current" character being 
scanned by the machine. 

All instructions have three fields : an op-code field, and two addresses, AT and 
AF. Procedures are written using two types of instructions, corresponding to 
two different forms of the op-code. 

First Type: The op-code is a letter of the alphabet, a. 

Second Type: The op-code is the location of a procedure enclosed within square 
brackets [A~. 

The effects of these instructions are as follows. 

Type t :  if sh=a  then move past a (i.e., set h: = h + t )  and go to AT 
else 9o to AF. 

Type 2: call on the procedure which starts in location A (recursively); 
if it returns with value true then  go  to AT 
e l s e  if it returns with the value false then go  to AF. 

Each AT or AF field can contain either a location of an instruction, or one of 
the two special symbols T or F. If it contains a T the procedure returns with the 
value true. If it contains an F, the procedure returns with the value false, and h is 
reset to the value it had when the procedure was called. (This implies that the 
value of h is saved together with the return address, whenever a procedure is 
called by all op-code of Type 2.) 

An example program for the Parsing Machine should help to make these 
definitions clear. In all our examples, we shall write PM instructions in an ad 
hoc assembly language, using symbolic addresses and labels. A blank address 
refers to the location of the instruction which appears on the line that immediately 
follows the blank address. 
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Consider the following grammar for a language that  bears some resemblance 
to "Boolean expressions". (This grammar is written in a modified BNF notation, 
using "-+" i n place of ":: = "  and using capital letters in place of syntactic types 
enclosed in brackets; for example, the first rule might be rewritten 

(Boolean expression 5:: = (relation)l ((Boolean expression)) 

in BNF notation.) 
B ~ R I ( B )  

R-+ E = E  

E - ~ I b I ( E + E )  

(2.1) 

Using the assembly language described above, we can write a corresponding 
Parsing Machine program : 

loc op-code AT AF 

B JR] T 
( F 
[B] F 
) T F 

R [E] F 

[E~ 1" F 
E a T 

b T 
( F 
[E] F 
+ F 
[El F 
) T F 

S [B] ERROR 
q OK ERROR 

Note the correspondence between the grammar and the PM program. The 
last two lines of the program correspond to a further grammatical rule 

S- - .Bq  

where " q "  is a special right delimiter symbol which appears only at the end of 
the string being analyzed. The procedure S will go to " O K "  if the entire string 
being analyzed is a B followed by q, otherwise it will go to " E R R O R " .  

If we set this PM program to work on the input string 

(a = (b + a)) a = sl s2... sl0 

starting at location S, the sequence of actions begins as follows. (Initially h =1" 
i.e., the first character s 1 is being scanned.) 

6* 
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Call B ( / ,= t )  
Call R (h=l) 

Call E ( h = l )  
Look for a: no 
Look for b: no 
Look for ( : yes, set h: = 2 
Call E ( h = 2 )  

Look for a: yes, set h : =  3 
Return, true. 

Look for + :  no 
Return, false; set h:-----t 

Return, false; set h : = l  
Look for (: yes, set h: = 2 
Call B ( / ,=2)  

Call R ( h = 2 )  

and so on. Ultimately the program will go to the location " O K " ,  and the history 
of procedure calls with true returns will correspond to the following diagram 
(" parsing") of the input : 

S 
I 

B 

B 
k 

R (2.2) 
I I 

E 
L I 

E 

E E 

a =  b + a )  ) 

This diagram may  be thought of as being constructed from the top to bot tom by  
the Parsing Machine program. 

The left portion of each bracket in the diagram is constructed when calling a 
procedure, and the right portion is completed when returning from that  procedure. 

A study of this program should convince the reader that  if s , . . .  s~ is any 
sequence of the letters {a, b, (, + ,  ), = ,  q}, with only s~ equal to q, the PM 
program goes to OK when s, ... s~ is of the form B q, and its history of true returns 
corresponds to a parse diagram; otherwise the PM program goes to ERROR.  But 
this assertion requires proof ! There are some grammars for which the corresponding 
PM program will not work correctly, as we shall see. Therefore we want to examine 
the general question, "For  what grammars will the corresponding PM program 
work ?"  

3. PM Programming 

To analyze this question, we must  state carefully what we mean by  the 
"corresponding PM program." 
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First assume that,  as in the above example, all BNF rules have been written 
in the standard/orm 

X - +  Y~ [ Y~ ] ... IY~,lz~z~ . . .Z ,  (3.t) 

where m, n >_ O, m + n > O, and the Y's and Z's  are either terminal characters 
(i.e. letters of the alphabet) or nonterminal symbols (i.e., syntactic types). The 
righthand side of (3.1) has m + t  alternatives; if m = 0 ,  it has the simple form 

X - +  ZI Z~ ... Z.  

If  n = O the string Z I Z~. . .  Z,  is to be regarded as the emlbty string. The PM 
program corresponding to a rule in standard form consists of the following m + n 

1OC 

X 

instructions: 
op-code AT AF 

[Y~] T 
[Y~] T 

[Y~] T * 
[z,] F 

Ezo -,3 r 
[Z,,] T F 

(3.2) 

Brackets around Yj or Z i in these op-codes should be removed when Yj or Z i is 
a terminal symbol. The address denoted by"  *" is to be replaced b y "  T "  if n ~- O, 
otherwise it should be left blank. 

The specification (3.2) has to be modified in the trivial case when both m = O  
and n ~ O; then the rule is X-+e, where e denotes the empty  string, and the 
procedure X should always return true without advancing h. The latter effect can 
be achieved by  the PM program 

X [Q] T T 
Q a F F 

where a is any terminal letter. Such anomalies are unimportant  to the theory, 
and they disappear when semantic operations are added to the Parsing Machine's 
repertoire (see [5, volume 5]). 

When a BNF rule is not in standard form, suppose that  it has the form 

x - >  o~ l . . .  IO~mlzl Z~ . . .  z .  (3.3) 
where cq . . . . .  a m represent strings of terminal or nonterminal symbols. Then we 
can change it into standard form by  introducing new nonterminal symbols 
Y1 . . . . .  Ym, adding the rules 

rrn.-.+ o~ m 

and replacing (3.3) by  (3.1). For example if our BNF grammar  has a rule 

X-+AB]CD 
we change it to the two rules 

X-+ YIC D 
Y-+A B 
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This allows the PM to back up if it has found an A which is not followed by  B, 
so tha t  it can t ry  the other alternative CD. 

I t  is important  to observe that  the order in which the PM rules are listed can 
drastically affect the behavior of the machine. For example, if we have a pro- 
duction 

x ~al,,b (3.4) 
the PM program will never recognize the string a b as X, since it will return true 
once it finds the first alternative a. This production might therefore be written 

X-+abla 

and transformed into standard form. 

A better  idea is perhaps to avoid making the machine back up, b y "  factoring" 
this rule into 

X-+a B 
B~b[~ (3.5) 

Further problems can still arise, however, if there is also another rule 

Y-> X b b (3.6) 

present in the grammar.  Then it becomes impossible for the PM to know whether X 
should be a or a b, without looking ahead to see how many  b's follow. This can 
lead to serious difficulties, which we will consider later; fortunately in many  
practical situations these pathological problems do not arise. 

The principle of " fac tor ing"  which is shown in (3.5) is of some importance 
in simplifying and speeding up PM programs. I t  is convenient to rewrite (3.5) as 

x-~a  Wbl q 
making use of "meta-brackets" [~ and ~ to group alternatives together so that  it 
is unnecessary to give a special name (like B in (3.6)) to the new syntactic type. 

Consider now the following rule: 

X-+albcklbdklbe/ikibeghiklbelik]beghik 
This can be factored as 

X->albIcldleUlgh$Uli$~k (3.7) 
The introduction of factors in this case does not require procedure calls; 

only branching is necessary, since the following PM program can be written for X:  

X T 

X 2 

xl  

a 

b 
c G 
d G 
e F 
! X2 
g F 
h X~ F 
i G 
i x l  F 
k T F 

F 



Top-Down Syntax Analysis 85 

I t  can be shown that  simplifications of this kind can always be made if we 
redefine standard form (3.1) so that  any of the Z's  may  be factored quantities 
which themselves are in standard form. Rule (3.7) is an example of this more 
general kind of standard form. 

Another simplification can be made when we have the "closure" operator A*, 
meaning "zero or more occurrences of A in a row",  i.e. e or A or AA or AAA, 
etc. The corresponding syntactic rule is 

A*-+AA*[ e 

which, by  our previous conventions, must  be expanded into the following rather 
long PM program, where Y corresponds to AA*: 

loc op-code AT AF 

A* IV] T T 

Y [A] F 
[A*] ~ F 

A much faster code can be written which obviously is equivalent except that  
it saves a great many  subroutine calls: 

A* [A] A* T (3.8) 

We can extend the definition of standard form, (3.t), further, so that  each Z 
is allowed to be also of the form W* where W is a single symbol (terminal or 
nonterminal). 

The two simplifications just discussed, namely factoring and closure, are 
instances of a general programming rule which allows us to replace a procedure 
call by  a "go t o "  when this call is the last act of another procedure. 

As an example, consider the ALGOL 60 definition of an unsigned number:  

D ----> 

U - +  

U' --> 
p - - ~  

p '  ___> 

S' -+ 

E -+ 
g '  --~ 

M - +  

N - +  

Here N is ALGOL'S (unsigned 

oll ]213 [4[51617]819 
DU' 

ule 
.U  

+1 - I  ~ (3.9) 

loS'U 
E[e 
*'lvp' 
E[ME'. 

number) ,  E is (exponent  par t ) ,  P is (fraction 
par t ) ,  etc. A slight change has been made to the definition of U, (unsigned 
integer),  since ALGOI.'s definition U---*UD]D would get the PM into a loop. 
This phenomenon is called "left  recursion", which is the bane of top-down 
analysis; left recursion is analyzed further below. 
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Grammar  (3.9) may  be factored into the following standard form: 

D -+0[ 1 [ 2[3 [4[ 5 [6[ 7[819 

U--+ D D* 

P - + .  U 

E ~ o l [ + l - I  ~llU 
N-+E] IVPI u WPI 8]]1] [[EI 81 

The corresponding PM program is 

10 

+ 

N [E] 
[P] 
[u] 
[P] 

N I  [E] 

loc op-code AT AF 

D 0 T 
t T 

9 T F 
U [D] U' F 
U' [D] U' T 
P U F 
E F 

U 
U U 
T 
N t  

F 
N t  N I  
T T 

and it runs much more efficiently than the PM program corresponding to (3-9). 
Note that  the above code involves another simplification, in that  procedure P was 
not written 

P F 
[U] T F 

Exercise 1.* For which set of strings does the following PM program go to 

loc op-code AT AF 

A a T 
[A] F 
b T F 

e [A] T 
c F T 

C b T 
[C] F 
c T F 

S [B] ERROR 
D a D 

[C] ERROR 
-t OK ERROR 

" O K " ,  starting at S ? 

* Answers to the exercises appear at the close of this paper. 
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4. The Partial Back-Up Problem 

Examples (3.4) and (3.6) show that  the Parsing Machine's limited back-up 
capability makes it unsuitable for general BNF grammars. But  the example of 
Boolean expressions in Section 2 shows that  the PM can handle a reasonably 
wide range of grammars  of practical interest, and we now return to the question 
posed at the end of that  section: "For which BNF grammars,  converted into 
standard form (3.1) by  the technique of (3.3) and then converted into PM 
programs by  the definition (3.2) supplemented by  the inclusion of a right delimiter 
q symbol as in Section 2, does the corresponding PM program accept precisely 
the strings belonging to the language defined by  the grammar  ?"  (In other words, 
we go to OK if the string is in the language, otherwise to ERROR.)  

Unfortunately this problem is unsolvable, i.e., there is no effective algorithm 
which decides (from a given grammar) whether or not the PM program will 
always work. 

Proo]. Let ~ . . . . .  am,/31 . . . . .  fl~ be strings of a's and b's; and let z 1 . . . . .  z,~, 
a, b, x be the terminal letters of our alphabet. Consider the following rules: 

A -->zlcq]...Iz,noc,n]zxAocl]...IzmAcr m 

B -->Zl& 1.-. ]z,~,~ ]zz Bfl l l . . .  [Zm Bfl,, 
C-->A x 
D---~Bxx 
E - + C [ D  
S -+Eq  

Here A represents the strings 

L(A) = { z i . . . .  z , ,  zi l  

for n = t ,  2, 3 . . . .  ; and B similarly represents 

L ( B )  = . . .  

The whole language S is A x ~ or B x x-~. 

Consider a string ~ belonging to A ; the PM will recognize that  ~ x belongs to E. 
Consider ~ not belonging to A but belonging to B; the PM will recognize that  

x x belongs to E. 
Consider ~ belonging to both A and B; ~ x x will not be recognized as belonging 

to E, although it does. 
Therefore the partial back-up method will work for this language if and only 

if L (A) c~ L (B) = 0. This happens if and only if there do not exist indices/1 . . . . .  i , ,  
n > 0, such tha t  ~il -.. ~i,=flil  ' ' .  fli,. 

But this is "' Post 's  Correspondence Problem,"  and it is well known that  no 
effective algorithm can decide if such indices exist. If  we could solve the partial 
back-up problem, we could solve Post 's  problem, but  that  is impossible. This 
completes the proof. 

Althongh the partial back-up problem is unsolvable, we can of course solve it 
in special cases. Sufficient conditions which can be used in practical situations 
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are given in [5, volume 5]. The most important special case of the partial back-up 
problem is the "No backup problem" which we will solve below. 

A method of top-down analysis which includes "full  backup",  i.e. which 
works on all BNF grammars that  are not left recursive, has been elegantly described 
by Floyd [6]; we will not treat  Floyd's general method here, since most cases of 
practical interest for programming languages can be done with little or nobacking 
up. 

5. Context-Free Grammars 

At this point it is convenient to introduce (in a somewhat more careful manner 
than in the previous sections) the basic definitions of context-free grammars, 
together with some notations associated with the mathematical theory of 
languages. We are going to solve a special case of an unsolvable problem, so it is 
worthwhile to prepare ourselves for this task. 

An alphabet X is a set of distinguishable symbols, and X* denotes the set of 
strings on the alphabet X, i.e. all sequences x 1 ... x. for n >_-- 0, where each xj is 

in X. I t  is convenient to denote strings of symbols by lower case Greek letters 
~,/3 . . . .  ; as we have already observed, the empty (or "null") string is denoted 
by e. The length of a string ~, written {0c{, is the number of symbols it contains. 
When ~ and/3 are strings, their concatenation ~fl is the string obtained by writing 
the symbols of fl in order after the symbols of ~. I t  follows from these definitions, 
for example, that  

1 , 1 - - 0 ,  1 /31=1 1+1/31 �9 

A set of strings is usually denoted by a capital letter, such as A, B . . . . .  The 
concatenation of two sets of strings is defined by the rule 

Note that  

and 

A B ={~fl l~eA and flEB}. 

A{e} ={e}A = A  

(5.t) 

Note that 

A+----_AA*=A*A, A*--_{e}uA +. 

A 0 = 0 A  = 0 .  

(The symbol 0 denotes the empty set.) 

We now define "powers" of a set of strings: 

A ~ = i f  n = 0  t h e n  {e} e l s e  AA ~-z. (5.2) 

Two further operations of importance are the closure A* and the positive closure A § 
of a set of strings: 

. . . .  O A ~ (5.3) A * =  lira [AOuAI• u A'~ ~o  
~----~ o o  

A § U A" (5.4) 
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A context-[ree grammar ff has four parts:  

(a) A terminal alphabet T, whose elements are denoted here by  lower case 
letters a, b, c . . . .  and occasionally by  special symbols auch as parentheses and 
plus signs. 

(b) A nonterminal alphabet N, whose elements are denoted here by  upper case 
letters A, B, C . . . . .  

(c) An initial symbol S, which is a nonterminal symbol that  represents the 
"sentences"  of the language defined by  G. 

(d) A set of productions ~,  which is the most important  part  of the grammar  ft. 
A production is a relation denoted by  

A---~O (5.5) 

(read, "A directly produces 0"), where A EN and OE(Nu T)*; i.e., A is a non- 
terminal symbol and 0 is a string of terminals and/or nonterminals. 

Each set of productions ~ defines a relation on the strings (N • T) * ; we say 

~ A ro --.~o~ O o) (5.6) 

(with respect to ~ )  if A--~ 0 is a production of ~ .  In other words, we say that  
9--~v2 if and only if there are strings e, w, A, 0 such that  9 = e A o ) ,  v 2 =eOco, 
and A --~ 0 is in ~.  

The relation 9 ~ ~o between strings, defined in (5.6), can be extended as follows : 
We say 

9 ~*~o (5.7) 

if 9-----~o, or if 9---~o, or if there is another string~ such that  9--~-->~0 . . . . .  or in 
general if 

9 = 9 0 ,  9i--~-9i+i for O<=?'<n, and 9n=~v (5.8) 

for some n=>0 and some strings 90, 91 , - . . ,  9, .  Relation (5.7) may  be read, 
"q) produces or equals ~" .  Similarly we write 

9 -~+~; (5.9) 

if (5.8) holds for some n ~>1 and some strings 90 . . . . .  %.  Relation (5.9) may  be 
read, " 9  produces ~p"; it excludes the case n = 0 ,  which in (5.8) is the trivial 
case that  9 =Y.  Note the analogy between (5.7)-(5.9) and (5.3)-(5.4). 

In general if r denotes any relation between members of any set, we obtain 
the reflexive transitive closure r* and the transitive closure r § of r as a new relation 
which is often of interest, by  using definitions (5.7), (5.8), (5.9) and replacing 
"-->" by  r. 

Now we are ready to define the significance of a context-free grammar  
fg ---- (7, N, S, P). The language L (if) defined by  ff is the set 

L(ff)  = { z E  T*IS--~+z}, (5.t0) 

i.e., the set of all terminal strings which the initial symbol produces. 
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If 0 is any string of terminals and/or nonterminals, we also write 

L (0) = {T E T*[ 0 -+* 3} (5.1 t) 

with respect to an understood context-free grammar ~. 

We say that  
A -+ 01l 02[... I 0n (5A2) 

is a rule of the grammar fr if and only if 

{A--~ OI, A -+ O 2 . . . . .  A-+On} 

is the set of all productions of fr whose lefthand side is A. 

The reader should be able to see the connection between context-free grammars, 
as defined here, and BNF syntax specifications as in the ALGOL Report. The only 
difference is in the notational conventions. 

As an example of a context-free grammar, consider the following rules 

E - + L ~ + L ~ *  

L - +  P P* 

e- albl(E) 
written in terms of the factoring and closure conventions of the previous section. 
From now on we will eliminate these conventions, in order to make the theory 
simpler to develop without decreasing our power of expression; the above grammar 
can be written 

E --~LL' 

L ' -+  + L L'i~ 

L --+PP' 
p, p p ,  l, (5.t3) 

P ~albl(E) 
S - + E ~  

Note the introduction of the last rule, according to the conventions of our Parsing 
Machine. 

The set of productions (5.t3) may be said to define a context-free grammar f# 
whose six terminal symbols are 

a,b, +,(,) ,-~ 

and whose six nonterminal symbols are 

E , L ' , L , P ' , P , S .  

The initial symbol is S. The grammar has six rules and ten productions. (Note the 
distinction between a rule and a production, see (5.12).) The language defined by  

resembles simple arithmetic expressions; a typical element of L (~r is 

a(b +ab)-q 
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6. The Null String Problem 

One of the first things we can do with a context-free grammar is to determine 
which nonterminal symbols can produce the null string; i.e., given a nonterminal 
symbol A, does A -++ ~ or not ? 

A simple "marking" algorithm applies to this problem. We can imagine all 
nonterminal symbols as either "marked"  or "unmarked" ,  where initially all 
are unmarked. Now we repeatedly do the following operation: Find a production 
in ~ whose lefthand side is unmarked, and whose righthand string contains 
nothing but marked symbols. (In particular, ~ is such a string. Terminal symbols 
are regarded as unmarked.) If no such productions exist, the algorithm terminates; 
otherwise, mark the nonterminal symbol on the left of the production which was 
found, and repeat the process. 

At the conclusion of this algorithm, a nonterminal A can produce e if and only 
if it is marked. For it is clear that  every marked nonterminal produces e. Con- 
versely, if A-++e in n steps, then if n = l ,  A must be marked; and if n > l ,  we 
have some 0 such that A-+  0-+ + s. Here each symbol in 0 must produce e in 
less than n steps, so by induction on n each symbol ill 0 is marked; hence A is 
marked. 

Essentially the same algorithm can be used to determine whether or not 
L (A) is empty, i.e. whether A produces any terminal strings or not. We use the 
same procedure, except that all terminal symbols are regarded as if they were 
marked. 

7. Directed Graphs 
A directed graph is defined by a set of vertices and a set of ordered pairs of 

vertices called arcs. Each arc may be thought of as an arrow drawn from one 
vertex to another vertex (or to the same vertex). An oriented path in a directed 
graph from vertex V to vertex W is a sequence of vertices V 0 . . . . .  V,, such that 
V = V  0, there is an arc from ~ to ~+1 for O<--_f<n, V.----W,, and n ~ t .  There 
obviously are algorithms to determine whether or not there is an oriented path from 
V to W,, given two vertices V and W of a finite directed graph, since we need only 
consider paths which go through each vertex at most once. 

Given any context-free grammar f#, we can draw its dependency graph. Here 
the vertices are the terminal and nonterminal symbols, and the arcs go from 
A to x if x appears on the righthand side of a production whose lefthand side is A. 

For the grammar of example (5.t3) we have the dependency graph 

There is an obvious correspondence between directed graphs and binary re- 
lations on objects of an abstract set S. If we have a relation r, we can consider the 
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directed graph whose vertices are the elements of S and whose arcs go from V to W 
if and only if V r W .  Conversely each directed graph defines a relation on its 
vertices. There is a path from V to W if and only if Vr§ in the notation of 
Section 5. 

In the case of context-free grammars, let us write 

X d Y  ( " X  directly depends on Y") 

if and only if there is an arc from X to Y in the dependency graph; i.e., if and 
only if there is a production rule X~+~Yf l  in the grammar, for some strings 

and ft. 
Now X d  + Y ( " X  depends on Y") is easily seen to be equivalent to the state- 

ment that 
X--~ + c~ y ~o 

for some strings ~ and oJ. If Xd+X, we say X is recursive (it depends on itself). 
This means there is an oriented cycle in the dependency graph. In (7.t), we see 
that all nonterminals are recursive except S. 

A nonterminal symbol A of N is called useless if either L ( A ) = 0  (i.e., no 
terminal strings can be derived from A), or if S does not depend on A (i.e., the 
strings derivable from A have no effect on L (N)). The discussion above shows 
that we can determine all useless nonterminal symbols. These (and all productions 
involving them) can be removed from the grammar with no effect on the language, 
provided that S itself is not useless. 

In addition to the dependency graph, we can also define the right-dependency 
graph, which is a subgraph of the dependency graph of a grammar. In this case 
we draw an arc from X to Y if and only if there is a production of the form 

X~YX1 . . .X , ,  
where n ~ 0, and where each of X x . . . . .  X~ can produce the null string. For the 
grammar (5.t3), we have the right-dependency graph 

Interchanging left and right 
graph: 

| 

(7.2) 

in these definitions gives the leJt-dependency 

) �9 

(7.3) 
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Let us say X t Y  ( " X  directly left-depends on Y " )  if there is an arc from X 
to Y in the left-dependency graph ; X l  § Y ( " X  left-depends on Y")  is seen to be 
equivalent to saying that  

X---~+yo~ 

for some string ~. We say that  X is le]t recursive if XI+X. Similarly, we define 
X r Y ,  Xr+Y,, etc. from the right-dependency graph. In grammar  (5.t3), we see 
from (7.3) that  no nonterminals are left recursive. The graph (7.2) shows that  L '  
and P '  are right recursive. 

The dependency graphs can be used to determine several quantities of interest 
to us. If A is a nonterminal symbol, let first (A) denote the set of all terminal 
symbols which can be the initial character of a string in L (A). I t  is clear from the 
above discussion that  

first (A) = { a E  TIA l+a} 

so we can read off the first characters of any nonterminal by  inspecting (7.3). 
Similarly, last (A) can be obtained from a consideration of the right dependency 
graph. 

Finally, we want to define the set 

follow (A) : {a E T IS--+* 0 A a q~ for some strings 0, 9}. 

I t  is not difficult to see that,  when there are no useless nonterminals, this is 
equivalent to saying follow(A) is the set of all terminal a such that  there is a 
production of the form 

W--~o~X BI ... B n Y~o (7.4) 

where n ~ 0, B 1 through B~ can produce the null string, Y is either terminal or 
nonterminal, X r * A ,  and YI* a. This means we can compute the set follow (A). 

(The reason (7.4) can be assumed is that  we may consider the production in 
the derivation of S-+* OA a ~ which "combines"  A and a.) 

For the example 

A first, 

S ab  
E ab  
L ab  
P ab  
L' + 
P'  ab  

grammar  (5A3), we have 

A) last (A) follow (A) 

ab)  ) 
a b )  + ) -~ 
a b )  + a b ( ) ~  
a b )  ) 
a b )  + ) -q 

8. The No-Backup Case 

In Section 4 we showed that  it was, in general, difficult (in fact impossible) 
to decide when the Parsing Machine will properly parse all strings belonging to 
the language defined by a context-free grammar  ~. The tools developed in Sec- 
tions 5, 6, and 7 now give us enough ammunition to at tack the most important  
special case of the partial backup problem, namely when the Parsing Machine 
never has to back up at all; i.e., when h never is decreased. This has two practical 
consequences: First, we can be sure that  the total time required for syntactic 
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analysis is bounded by  a constant times the length of the input string. Second, a 
computer program may  read the input one character at a t ime and need not save 
the characters previously read. 

Analysis of the general PM program (3.2) corresponding to a standard form 
program shows that  h can back up only when a false exit occurs after Z~, Z 3 . . . . .  
or Z~. This suggests tha t  we redefine (3.2) as follows: 

X EY~] T 

IY~] T �9 
Ez ] F (8.t) 
[Z2] E R R O R  

[Z~] T E R R O R  

We can now take any context-free grammar  ~ with rules grouped as in (3.3); 
these rules can be transformed into standard form (3.t) and the corresponding 
"no -backup"  program (8.1) can be constructed. The auxiliary rule introducing 
" q "  can also be added as before. 

We would now like our machine to behave as follows, when it starts at loca- 
tion S, scanning s I s 2 ... s. where only s~ is the " q "  symbol: If s 1 ... s~ is not in 
L (~), the program should go to ERROR.  If sl  . . .  s~ i s  in L (~), and if we have any 
diagram such as (2.2) which corresponds to a derivation S - - ~ * s  1 . . .  s,,, then the 
actions of the PM should correspond precisely to that  diagram (in the obvious 
manner). 

If  the no-backup PM program satisfies the conditions of the preceding para- 
graph, we shall s a y "  The no-backup method works for ~#." Note that  this condition 
implies in particular that  ~ is u n a m b i g u o u s ,  i.e. that  no two different diagrams can 
be given for the strings of L (~). For if there are two diagrams, the PM program 
is supposed to correspond to both of them, and this clearly cannot happen since 
the PM executes only one set of actions. Unambiguous grammars are of principal 
interest for programming languages. 

We now wish to answer the question, "Does the no-backup method work 
for ~ ?" when ~ is given. In  order to s tudy this problem, we first want to replace 
a grammar  with rules of the form (3.1) by  another grammar  whose rules are of 
a more simple form, and which generates the same language with only a slightly 
different structure. 

Given a rule X - + Y ~ I . . . I Y , ~ I Z 1 Z ~  . . .  Z,~, we can simplify it as follows: If m ~ t ,  
change the rule to the two rules 

x - >  Y lX' 

Y l...lY ,lz  . . .  

This does not change the essential behavior of the no-backup method, it just 
introduces redundant procedure calls. We can now suppose that  m G I ,  and that  
all rules have the form 

X - + Y I Z  
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If n > t in the first form, replace the rule by the two rules 

X -+Z1X'  

X '  ~ Z 2 . . .  Z~ 

where X'  is another new nonterminal symbol. 

Again the no-backup method is unaffected. We may assume now that each 
rule are of one of four types 

X ~ Y I Z  

X--~ Y Z  

X -+  Y 

X--+ e 

If Y or Z is a terminal (e.g., X - + a l Z  ), then introduce a new rule of the form 
X'-+a and change the Y or Z to the X'  (e.g., X--~X' IZ  ). 

All rules now have one of five forms: 

Type 1. X- -~Y IZ  

Type 2. X--+ Y Z  

Type 3. X---~Y 

Type 4. X - + a  

Type 5. X--~ e 

Here Y, Z are nonterminal symbols and a is terminal. Moreover, we may 
assume that no "useless" non-terminals are present. Let us say that a grammar 
satisfying these conditions is simple. 

8.1 Necessary Conditions 

We are now going to study four necessary conditions on grammars of the 
simple form we have just defined, which must be satisfied if the no-backup 
method works. Later we will prove that these four conditions are also sufficient, 
and this will solve the no-backup problem. 

First Condition. No nonterminal is left recursive. 

Otherwise it will be necessary for procedure X to call itself without advancing 
the input, when the machine is mimicking a derivation of S-+*o~Xco-++o~X Ow 
--~+ 3, where z is terminal. (Such strings 3, ~, w, and 0 exist because X is assumed 
to be left-recursive but not useless.) 

Lemma. Whenever a grammar has no left recursive nonterminal symbols, it is 
possible to order the nonterminal symbols X 1, X 2 . . . . .  X t in such a way that 

Xpl§ Xq only i] q < p. 

(In our example (5A3), L', P, P', L, E, S is such an ordering.) 

Pro@ This is a general result about the vertices of a finite directed graph 
which contains no oriented cycles. If there is no left recursion, the left dependency 

7 Acta Informatica, Vol. I 
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graph has no oriented cycles. The vertices of such a graph can always be ordered 
V1, V 2 . . . . .  V~ in such a way that  there is a path  from Vp to Vq only if q < p. (This 
is tile problem of "topological sorting" which is analyzed in more detail in 
[5, volume 1].) 

We can always find a vertex from which no arcs emanate, otherwise we could 
find an oriented cycle. Such a vertex may  be placed first in the ordering and 
removed from the graph, and this operation may be repeated until all vertices 
have been removed. The lemma has therefore been proved. 

Let us now restate the five types of rules under this ordering assumption: 

Type 1. XF--~X q [ X~ q<p  and r<p.  
Type 2. Xp--->XqX, q<p;  and if Xq--~+,, also r<p.  

Type 3- Xp--~ Xq q < p. 
Type 4. XK+a 
Type 5. Xp---> 

Another condition must be satisfied if the no-backup method works, as 
illustrated in the following grammar.  

X - +  Y [Z 

Y--~Y1Y 2 

Z -~Z1 Z2 
Zx--~ a 
Z2--~ b 

Yl-~ a 
L (X) = {ab, ac}. 

The Parsing Machine cannot parse a b as X without backing up. More generally, 
we can see that  the following condition must be true. 

Second Condition. For every rule o/ Type 1, first (Xq) n first (X,) ----0. 

To prove that  this is necessary suppose there is a terminal symbol a in both 
first(Xq) and first(X,). Thus Xq---~+aO and X,---~+a9 for some terminal strings 
0 and 9. Now if the Parsing Machine can parse a O as Xq and then as Xp, it 
cannot parse a 9 as X, and then as Xp, since the Xp procedure calls Xq first, and 
this must  advance past the letter a. 

Another case ill which the no-backup method has difficulty is reflected in the 
following grammatical  rules: 

W--+X Y 
X-+ YIZ 
Z --+ a 
Y-+a L(W) =-{aa, a}. 

The Parsing Machine cannot parse the string "a" without backing up. Thus, 
we find a further condition, analogous to the second. 
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Third Condition. For every rule o/ 
first (Xq) n follow (Xp) =- O. 

Here finally is another grammar  
discussed so far, but which still causes 

type 1 where X ,  can produce the null string, 

which satisfies all three of the conditions 
the no-backup method to fail: 

S --~ X-i 

X--+ Y]Z 

Y - + W  T 

W-~ VI U 

T -+ a 

Z ---> b 

V ---> c 

U-.+ e L(S) ={ca-i ,  a-t, b-i}. 

Here the Parsing Machine program will not accept the string "b-i  ". The 
procedure U cannot ever return false, so procedure W cannot return false, and 
neither can Y. Therefore the procedure for X will never call Z in any circumstances l 
This suggests adding yet another constraint. 

Fourth Condition. For every rule o/ type 1, Xq must not be "non/alse"; in 
other words it should not correspond to a procedure which will never return/alse. 

We see that  a nonterminal Xp is non[alse if and only if its rule is 

a) of Type 5 (Xp--~ e); 

or b) of Type 3 and Xq is nonfalse; 

or c) of Type 2 and Xq is nonfalse; 

or d) of Type t and Xq or X, is nonfalse. 

This shows how we can check condition 4, by sequentially determining which 
of X1, X 2 . . . . .  Xt are nonfalse (in that  order). 

8.2 Solution to the No-Backup Problem 

Theorem. I f  conditions 1, 2, 3 and ~l hold in a simple grammar (r then the no- 
backup method works. 

(In fact, it is possible to prove that  condition I follows from conditions 2, 3, 
and 4, so that  condition t is redundant.) 

The proof uses two lemmas. Let s l . . .  sn be the input string, and let s h be 
the current symbol on the input string. We may  assume by  condition I that  the 
nonterminal symbols have been put into an appropriate order X 1, X 2 . . . .  as 
specified in Section 8.t. 

Lemma 1. Under tile assumptions of the theorem, if Xp is not nonfalse and 
if s h r first (Xp), then the Parsing Machine instruction [Xp] L1L 2 will transfer to L 2. 

Proo]. The proof is by  induction on p, considering the ordering we have defined. 

Assume that  the lemma is true for all Xq, when q < p .  (In particular when p = t  
we are not assuming anything; proofs by  induction are often convenient to state 
in this way, without singling out the case p = t . )  
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First case: 
Xp-+Xq]X, q<p, r<p. 

Since Xp is not nonfalse, Xq and X, cannot be nonfalse, by  the definition of 
tha t  property.  Also since shCfirst(Xp), we have shCfirst(Xq) and shCfirst(X,). 
Now the PM program for procedure Xp is 

loc op-code AT AF 

Xp [Xq] T (8A) 
[X,] T F 

Therefore by  induction the machine will go to F. 

Second case: 
Xp---~XqX, q <p. 

Since Xp is not nonfalse, neither is Xq. And since shCfirst(Xp), obviously 
shCfirst (Xq). Now the PM program for Xp is 

Xp [Xq] F 
EX,] T ERROR (8.2) 

so, by  induction, procedure Xp will go to F. 

Third case: 
Xp-+ Xq q < p. 

This case is obvious. 

Fourth case: 

The PM program is 
Xp-+a. 

xp a T F (8.3) 

and since sh=~ a this case is also obvious. 

Fifth case: 
X p - +  e.  

This situation cannot occur since Xp is nonfalse. 

Lemma 2. Under the assumptions of the theorem, let Xp-+*sh... sk_l, 
where h ~ k. (If h = k ,  this means that  Xp-+* e.) Assume also that  she follow (Xp). 
Then the Parsing Machine instruction IXp]/_aL2 will transfer to Lx with h increased 
to k. Furthermore the actions of the machine during this t ime correspond to the 
derivation of Xp---~* s h . . . .  sk_ ~. 

Proo]. The proof is by  induction on k - - h  = m; and, for fixed m, on p. Thus, 
we assume that  the lemma is true for all p and m'  when m ' <  m, and for all p'<p 
when m is given. 

First case: 
Xp-+XqlX,, q<p, r<p. 

The program for procedure Xp is (8A). 

Subcase t a: 
X q - - ~ *  s h . . .  s ~ _  x . 
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By induction the lemma is true for Xq, thus it is also true for Xp. 

Subcase t b : 
Xr--->* S h � 9  S k _  1 �9 

If  h = k  (null string) then by  condition 3 sh=skEf~ so shCfirst (Xq). 
On the other hand if h >  k, shCfirst (Xq) by condition 2. Furthermore Xq is not 
nonfalse, by  condition 4. 

Thus by  Lemma t, procedure Xp will call IX,I;  and since r<p ,  the lemma 
holds by  induction. 

Second case: 
XK-->X qX,, where Xq-->*s h ... si_ 1, 

Xr----~*s ~ . . .  S k _ l ,  

for some ]'; h ~< ] --< k. 

The PM program is (8.2). If h < f the lemma is true for Xq and 32, (by induction, 
since k - - ]  is less than k -  h and q is less than p). If  h = ], then Xq can produce 
the null string, so r < p ;  again the procedure Xp will go to T by  induction. 

Third case : 
Xp-~ Xq, q < p. 

The lemma is valid for X e so it holds for Xp. 

Fourth case : 
Xp--->.a. 

We must  have sh=a and k = h + l .  The PM program (8.3) clearly goes to T and 
advances h. 

Fifth case : 
X p - . +  ,s. 

Here h must equal k; the PM program for Xp always goes to T without changing h. 

This completes the proof of Lemma 2. 

Now the theorem can be proved as follows. If s 1 ... s. is in L (N), the machine 
goes to " O K " ,  and its actions correspond to a given derivation, by  applying 
Lemma 2 to the program for S. 

If s I ... s, is not in L (~), the machine cannot go to " O K " ,  for each time the 
machine goes to " O K "  its actions obviously correspond to a derivation in the 
grammar;  this derivation must  be of the entire string, since only s~--- q. 

The remaining possibility is that  sl ... s~ is not ill L (N) but the PM program 
never terminates. This is impossible, since the grammar  is not left-recursive; we 
can prove by  induction on n -  h and (for fixed h) on p that  no call of [Xp] can 
result in an infinite loop. The latter proof is straightforward as in Lemmas t and 2; 
but it is not completely trivial, since the PM can go rather slowly as in the grammar  

Xl---)- 8 
X~ ~ X~ X~ 
X3-~ X~ X 2 
X ~-~ X~ X~ 
Xs--~ a 
Xr--~ X~ X 5 
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8.8 Summary 

The four conditions of Section 8.t, derived for the special case of simple 
grammars,  can now be translated back into the general si tuation in which all 
rules are of the s tandard  form 

X - - - ,  Y~I.  . . I Y , , I Z ,  . . .  Z ,  (8.4) 

The theorem of Section 8.2 and the simplification procedure discussed just before 
Section 8.t imply  tha t  the following four conditions are necessary and sufficient 
for the val idi ty of the no-backup method,  provided there are no useless non- 
terminal symbols : 

t.  The g rammar  contains no left-recursive nonterminals.  

2. The sets first (Y~) . . . .  , first (Ym), first (Z1...  Z,) are mutua l ly  disjoint, i.e. 
they  have no letters in common.  

3. If  Zx. . .  Z,--~* e then first (Y/) contains no letters in common with follow (X). 

4. Y1 . . . .  , Y,, are not  nonfaise. 

In  this case a nonterminal  symbol  X corresponding to the rule (8.4) is defined 
to be nonJalse if and only if either 

(a) Yj is nonfalse, for some f (1 <=j<=m) 

or (b) n = 0  

or (c) n > 0 and Z 1 is nonfalse. 

As remarked earlier, condition t is redundant  since it can be deduced from 
the other  conditions. 

I t  is possible to design a ra ther  efficient method for checking these conditions: 
First  do a " topological  so r t "  of the nonterminal  symbols, based on the left- 
dependency graph, and at the same time determine the sets first (X) and check 
conditions 2 and 4 for each X as it is emit ted by  the topological sorting algo- 
rithm. Then compute  follow (X) for each X and test condition 3. 

Exereise 2. Does the no-backup method work on the g rammar  (5.13) ? Prove 
your  answer, by  testing the four conditions above. 

9. An Overview of Top-Down and Bottom-Up Analysis 

In  addition to the relation --> which has been defined in connection with a 
context-free g rammar  ff in Section 5, we can also define the restricted relation 

L 
~Am--->o~Oo~ (9.t) 

if A->(9  is a product ion and if eE T*. This means A is the leftmost nonterminal  
in e A co. Similarly we define 

R 
o~ A o)---> aOco (9.2) 

L , R + L , R +  
if ~o E T*. These relations can be extended as before to -> , -> , -> , -> ; the 
relation 

L ~--~+~ 

m a y  be read, "~0 left-produces ~o". 
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There are in general many sequences of strings al, a2 . . . . .  a,~ such that  

S --->0"1---> " �9 �9 - +  O ' m - + ' [  

is a derivation of the terminal string z in a contextfree grammar; whenever a i 
contains at least two nonterminal symbols, we have a choice as to which non- 

terminal to replace first. The importance of the ~ and ~ relations is that,  for 
. L 

every diagram such as (2.2), there is exactly one corresponding -+ derivation, and 

exactly one corresponding ~ derivation. Thus, using the example (2.2) and the 
grammar (2.1), we have. 

and 

S L B~ L (B)q ~ (R)q 

(E=E)~L (a=E) q 

L (a=(e+e))~ 
L (a=(b+f))~ 
X (a=(b+a))~ 

S ~ B-~ -~ (B)q ~ (R)q 

(E=E)q L (E=(E+E))q 
(E=(e+a))~ 
(e=(b+a))~ 
(a=(b+a))~ 

(9.3) 

(9.4) 

as the corresponding left and right derivations. A context-free grammar fr is 
unambiguous if each string in L (fr has exactly one left derivation (or equivalently, 
exactly one right derivation). 

The general problem of syntactic analysis is to start with a string T of terminal 
symbols, e.g., ( a = ( b  + a ) ) 4 ,  and to find (when possible) a sequence of produc- 
tions such that S-+* z. 

The bottom-up method (proceeding from left to right) attacks this problem 
by first "reducing" the above string to 

then reducing this to 

and then 

and 

( e = ( b + a ) ) q  

(E=(E+a))~ 

(e  = (~ + E)) 

(E = E) 

etc. (A reduction is the opposite of a production.) The leftmost possible reduction 
is applied at each step. This process continues until we reduce everything to S, 
or show that  this would be impossible. Note that the sequence of intermediate 
steps is exactly the reverse of the right production sequence (9.4). In general, 
bottom-up analysis (/rom left to right) proceeds by right reductions, i.e. by reversing 
the right production sequence. 
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The top-down method (proceeding from left to right) attacks this problem 
somewhat differently. I t  starts with S, and attempts to reach the given terminal 
string ~ by  a sequence of left productions, as in (9.3)- At each step we must decide 
which production to apply to the leftmost nonterminal symbol. In general, 
top-down analysis (]rom left to right) proceeds by left productions. 

Similarly we can describe top-down and bottom-up methods which go from 
right to left, by interchanging the r61es of left and right in the above discussion. 
(Currently some extended methods which are more symmetrical between left and 
right are being explored by several people.) 

Various "backup" procedures can be given for reconsidering some alternatives 
of the derivation sequence that  later prove to be incorrect. Principal interest, 
however, centers on the cases where the syntactic analysis proceeds without 
backing up: then each step of the derivation sequence is known to be the only 
possible step. Such procedures are usually called deterministic analysis methods. 

In a previous paper [71, the author has described the general conditions under 
which strings of a grammar can be analyzed deterministically, bottom-up, from 
left to right, looking k characters ahead of where the next reduction step will be 
made. Such grammars are called L R (k) grammars. The analogous property for 
top-down analysis, first suggested by  Lewis and Stearns [81, will be called here 
the "LL(k)" property; it means a top-down analysis is to be performed from 
left to right, looking k characters ahead of the terminal symbols which have 
already been matched. Formal definitions of these concepts appear in the next 
section; for the present, let us quickly review the significance of four properties a 
context-free grammar may have; 

LL (k) : scan from the left, using left productions 

L R (k) : scan from the left, using right reductions 

RL (k) : scan from the right, using left reductions 

R R (k) : scan from the right, using right productions. 

(Ill each case, k represents the number of symbols of "lookahead," used to decide 
what production or reduction to perform next. A "right  reduction" is the opposite 
of a "right production" (9.2).) L L (k) and R R (k) correspond to top-down analysis. 

10. Definitions of L L  (k) and L R  (k) 

Let us now introduce some useful notations. If k is a nonnegative integer and 
is a string, we define 

I i f  I~] =>k t h e n  the first k characters of 
k: c~ = [e lse cc (t0A) 

/ if [~l =>k t h e n  the last k characters of c~ 
~: k = [ e l s e  m (10.2) 

Furthermore if A is a set of strings, we write 

k: A ={h: ~r~cA}, (10.3) 
A: k = { ~ :  hlm~A }. (t0.4) 
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Note  t ha t  first (A) = (1 : L (A)) r~ T = (1 : L (A)) - -  {~} ; also if k:/~ = k: y then  

h: (~t~) = ~: (~). 
The informal  discussion of Section 9 can now be formula ted  precisely in t e rms  

of this notat ion.  

Definition. A context-free g r a m m a r  is L R (k) if the following condit ion holds 
e t t 

for all ~1, ~i,  ~ ,  and as in (N ~9 T)*, all ~a and eta in T*,  and all A, A' in N:  

S3+,~1A ~ 3  - +  ~ 1  CX2 ~ 3  

and 

R t ! t R t ! t 
S-+*oqA 0~3--~ ~10r a 

and 

implies tha t  
! i 

~1=~1, A = A ' ,  and ~ 2 = ~ .  

Definition. A context-free g r a m m a r  is L L (k) if the following condition holds 
t ! 

for all ~1, ~4, ~4 in T *  and all c~2, %,  ~2, in (N n T) * : 

L L L , 

and 
L L , L , t 

S-+*oqA ~ 3 - - - ~ 1 ~ f l O C 3 - - ~  (XI(X 4 

and 
t 

implies tha t  
~ 2  = ~t2 " 

Let  us now define a general izat ion of the "follow" function t ha t  allows us to 
derive fur ther  informat ion  about  the LL(k) proper ty :  I f  flET*, A qN, and k 
is a nonnegat ive  integer,  let 

Fk(A,fl) =k:{OIOET* and S-->*flAO}. (t0.5) 

Thus  in our earlier notat ion,  

follow (A) = uT.F1 (A, fl) 

if A # S  and if we regard q as an element  of T. 

Theorem (Lewis and Stearns).  I / A  -+~1 and A --~o~ 2 are two distinct productions 
o/an L L (k) grammar, and i/ fl is in T*, then 

[k: (L (@ 01) ] n [k: (L (~2) 02)] = 0 (t 0.6) 

/or all 01, 02EFk(A, fl). 

( In  fact  this condit ion can be proved equivalent  to the LL(k) prope r ty ;  
see [8]. The condition leads to a fairly simple a lgori thm to test  whether  a contex t -  
free g r a m m a r  is LL (k) for a given k.) 
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Proo/. Suppose there are strings co, 01, 02, such that 

(L 01) 

01, 0 2 ~ F  k ( A ,  t3). 

We will show that this implies ~1 = ~=, which contradicts the hypothesis that 
A - ~ ,  and A-+~2 are distinct production rules. 

The proof is mostly a matter of translating between notations. By hypothesis, 
! t 

there are 0x and 02 in T* such that 

t t p t 
S --->"13 A 01, S -+ * fl d 02, k:01=01,  k:02=02. 

Hence by considering the corresponding left-derivations, there are strings Yl, Y2 in 
(N w T)* such that 

L , t , t 

SLy. * 13Ayl, S-+ 13Ay2, y l  -->'* 01, y2 "-->" 02. 

There are also T1, ~ in L (%), L (g2) respectively such that 

k:T1 0'1 =k: ~1 01=a~ =k: T~ 02=k:~2 0'9.. 

Therefore 71=~2 (see Exercise 4). 

Now we have 
L , L L t 

S--+ 13Ayl--->13a1~'l--+*13~;1 01 

L , L L t s-+ SA  -+13  r2-+*13 2 
so %=~2 by the definition of LL(k).  Q,E.D. 

Exercise 3. Show that an L L  (k) grammar with no useless nonterminals has 
no left-recursive nonterminals. 

Exercise 4. Show that every L L  (k) grammar satisfies the following condition: 
For all cq, ~4, ~ in T* and all ~a, c~'a in (Nw T)*, if 

s L  , . t L  , 
-+ ~1A ~3--~ 0~10~ 4 

and 
s L  , . t L  , 

-+ aiM ~3 --> %~4 
alld 

t 
k:0~4:k:~4 

t then % =  eta. 

11. L L  (1) Grammars 

The special case k =1 in the preceding discussion of L L  (k) seems to be quite 
a bit simpler than the case of higher values of k, and it is directly related to our 
previous discussion of the "no-backup method," so we shall now study it in 
detail. 

Suppose G is a grammar with no useless nonterminals ; let us test the condition 
of the last theorem for the case k =1.  Let A be a nonterminal symbol whose 
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rule is 
A - ~ l [ ~ 2 I . . . [ a  ~, m ~ t .  (t1.1) 

If  p 4: q, and if a E first (ap), b E first (C~q), condition (10.6) says tha t  a 4= b. Fur ther -  
more we cannot  have  bo th  ~p-+* e and ~q---~* e, since (10.6) would be violated if 
we take  01=02.  And if ~p--~*e and bEfirst(%), condition (t0.6) says t ha t  
bCFI(A, fl) for any/5,  i.e. bCfollow(A). 

Thus  we have  three conditions which are necessary for each rule ( t t .1)  of an 
LL (t) g r a m m a r :  

t .  first(~l) . . . . .  f i r s t (g , )  are mutua l ly  disjoint, i.e. contain no common 
elements.  

2. At  most  one of ~1 . . . .  , c% can produce a null string. 

3. I f  ~p~*e, then first(%) has no elements in common with follow(A), for 
l ~ q ~ m ,  q4=P. 

(Note:  Conditions I and 2 can be combined b y  saying tha t  

( I : L ( % ) ) n ( t : L ( % ) ) = 0  when p ~ q . )  

Now these three conditions are obviously su//icient to show tha t  f# is L L  (t):  
For  if we are to replace A b y  one of ~x . . . . .  ~,~, the choice of which ~i to use is 
uniquely  determined b y  examining the first character  of the terminal  str ing which 
u l t imate ly  is to be produced b y  A. 

Note  tha t  g r ammars  sat isfying the no-backup  condition s ta ted  at  the end of 
Section 8 also sat isfy the three conditions above,  so they  are LL (1)grammars .  
Bu t  a g r a m m a r  such as 

B---~Ab]Cd 

A --~a A I e 
(tl.2) 

C--~cC[ c 

S---~ Bq 

which is LL( t )  does not sat isfy the non-backup  condition. Both  A and C are 
nonfalse, so the Parsing Machine will not be able to work with this g rammar ,  
regardless of whether  we write 

B-~Ab[Cd or B-+Cd]Ab 

before conver t ing to s tandard  form. 

However ,  it is possible to put  any  L L (1) g r a m m a r  into a fairly simple s tandard  
form, which can be t rea ted  b y  the Pars ing Machine. 

Let  us say an L L (k) language is a set of strings which can be defined b y  an 
L L (k) grammar. 

Theorem. Any L L  (I) language can be given a grammar/or which all rules have 
one o/ the two/orms 

Type  t.  A --+al~l]... [amO~ m 

Type  2. A- -~ i [ . . . ] a , , o~ , , , [  e 
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Here a 1 . . . .  a,~ are distinct terminal characters; and in rules o/ Type 2, no a i is in 
follow (A). 

(Conversely, such a grammar  is obviously L L (I), and it obviously also satisfies 
the conditions of the no-backup method. So the L L ( t )  languages are precisely 
those analyzable by  some no-backup PM program.) 

Pro@ Given a grammar  f# satisfying conditions t, 2, 3 above and with no 
useless nonterminals, we can prove (see for example exercise 3) that  f~ has no 
left-recursive nonterminals. Thus we can order the nonterminal symbols A 1, 
A 2 . . . . .  A t where Apl§ only if q < p .  

I t  follows that  the rule for A 1 must be of either Type t or Type 2 as in the 
theorem. 

Suppose that  the rules for nonterminals Aq have the form of Type 1 or Type 2, 
for all q < p. Suppose further that,  if 

Aq-->aql  ~tql]...[aqmgOCqm.[ e and q < p ,  (1t.3) 

is a rule of Type 2, we also have added the additional rule 

A;-+aql %1 [... [aq,,~o~q,~, (11.4) 

to the grammar,  where A'q is a new nonterminal symbol. We will show how to 
change the rule of A p so that  it has the form of either Type I or Type 2. 

Let the rule for Ap be 

If ~i begins with a nonterminal symbol, so that  c~ i has the form Aqfl, we must 
have q < p .  If the rule for Aq is of Type 2, replace c~ i by two alternatives A'gfi[fl, 
where A ~ is given by  (t 1.4). This leaves us with an L L (1) grammar:  for first (A q) n 
first(fl) (first(A'q) n follow (A q) ----O; and first(A'q)w first(fl) =first(~i)  has no 
letters in common with first (~i) for i ~ 1'. Furthermore if/3-->* e, we must verify 
that  first (A'q) has no letters in common with follow (At), and this is true because 
follow (Ap) _( follow (A q) when /5-->* ~. 

By repeating this process, we may  assume that  A t has a rule 

where none of the ~i begins with a nonterminal whose rule is of Type 2. Now if ~i 
begins with a nonterminal A q, we may  write ~ i =  A q/5, where q < p ,  and the rule 
for A q is 

Therefore we may  replace the alternative ~i by  

aql OCql fl] . . . [aqmq O~qm. /5 

and we still clearly have an L L  (t) grammar.  Thus the rule for Ap can ult imately 
be reduced to either Type t or Type 2, and the proof is complete. (The auxiliary 
rules (11.4) are not needed after the construction has terminated.) 
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As an example, the grammar (tl.2) above would be changed to 

A-->aA]e 
C-+cCJ ~ 
B--->aA blblcCdld (ta.5) 
S - - a A  b,q Ib,q leCd ,q Id 'q 

(Here B has become useless.) 

Grammars in while all rules are of Type t are obviously LL(t) .  They have 
been called "s-grammars" by Korenjak and Hopcroft [93, who proved (among 
other things) that  the equivalence problem is solvable for s-languages. In other 
words, if ~1 and f#z are s-grammars, we can decide if L (f#J = L  (~2)- 

The grammar (ta.5) can be transformed into an s-grammar for the same 
language if we introduce new nonterminal symbols [Ab] and [Cd] standing 
respectively for L (A b) and L (C d). The s-grammar is 

[A b 3 --~ a [Ab 3 ]b 

[ca] -~c [Cd] ]d 
S-->a[A b] -q Ib-q lc[Cd] -q Id ,q 

While preparing these lectures, the author found that many other L L ( t )  
grammars are amenable to similar transformations; so it seemed reasonable to 
make the conjecture that,  whenever L is an LL( t )  language, then L,q is an 
s-language. If this conjecture were true, it would provide a solution to the equiv- 
alence problem for LL  (l) languages. 

One grammar which seemed to provide a counterexample to this conjecture 
was the following: 

P - - ~ + P P I x A  
A --~aAle (11.6) 
S---> P ,q 

This represents Polish prefix notation, with the binary operator + and the vari- 
ables x, xa, xaa . . . . .  The author made several fruitless attempts tofindans-gram- 
mar for this language, before finally hitting on the following trick: We can 
write P = P ' A ,  where P' represents those strings of P not ending in a; and we 
can therefore give the following s-grammar for the language (t t.6): 

P'--~+ P'[AP'][x 
[A p'] ~ a  [A P']I + P' [A P' ] lx  

S--> P '  [ A -q ] 
[A ,q] -+a[A ,q] I --I 

This example gave added weight to the conjecture. 

However, R. Ktirki-Suonio found a simple counterexample [10], which 
shows that  ~ cannot in general be removed from an LL(I)  grammar followed 
by -~. Thus, the null string plays an important role in top-down analysis. 

Exercise 5 (suggested by Kate1 ~ulik II). Show that  the following grammar 
is L L  (2). Is there an L L  (1) grammar for the same language ? 

S-+aaSbblale 
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12. Concluding Remarks 
It is natural to inquire which is better, top-down or bottom-up analysis ? I t  

is difficult to give a complete answer to this question, but some comments can 
be made. 

First, every L L (k) grammar is an L R (k) grammar. (This can be proved using 
a rather involved but  intuitively clear argument. A careful and clear proof of 
this fact would make a suitable master's thesis and would be an instructive 
project.) 

On the other hand, the "Boolean expression" grammar (2.t) is LR(O) but 
not LL(k) for any k: The string (((((((((((a =b))))))))))) needs to be parsed quite 
differently from the string 

(((((((((((a +b) +b)+b)+b) +b) +b) +b) +b) +b)+b)+b) =b 
which begins with the same t 2 symbols. I t  can in fact be shown that  this is not 
even an LL (k) language, i.e. there is no equivalent LL (k) grammar. Thus, bottom- 
up analysis can deterministically parse more general languages than top-down 
analysis can. 

On the other hand when we are fortunate enough to have an LL (t) grammar, 
we have more flexibility in applying semantic rules, since we know what produc- 
tion is being used be/ore we actually process its components. This foreknowledge 
can be extremely important in practice. The bottom-up procedure only discovers 
what is present after it has scanned the text. A theoretical model which demon- 
strates this advantage of top-down analysis has been discussed at length by  Lewis 
and Stearns [81. 

A simple model for bottom-up analysis which might be considered the bottom- 
up analogue of the no-backup Parsing Machine is the technique of "simple 
precedence grammars" developed by Wirth and Weber It1]. The bottom-up 
analog of the partial backup method is the original method of Irons [t2~, which 
has not yet been given a theoretical treatment. 

In conclusion, here are some research problems which are (perhaps) listed in 
increasing order of difficulty: 

t. Is every LL(k) language, k-->t, an LL( t ) l anguage?  (The corresponding 
statement is true for L R (k) and L R (t) languages.) 

2. Is the equivalence problem solvable for LL (t) languages ? (The work of 
Korenjak and Hopcroft [91 makes this likely.) 

3. Can the method of Irons [t2J be analyzed theoretically in a fashion anal- 
ogous to the partial-backup method discussed above ? 

4. What class of languages can the Parsing Machine accept ? (See Exercise t.) 
5. Is the equivalence problem decidable for L R (1) languages ? (This seems to 

be the most important unsolved problem at the present time; it is also desirable 
to answer the question for very special cases, such as Wirth's precedence gram- 
mars [t 11.) 

Postscript, Added May 1971. Research problems t and 2 have now been 
resolved. R. Kiirki-Suonio proved that the LL (k + t )  grammar 

S--+aSA[s 
A--->akbS[c 
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defines a non-LL (k) language [ t @  D. J. Rosenkrantz and R. E. Stearns showed 
that  the equivalence problem for L L (k) grammars is solvable [t3]. Both of these 
papers establish a number of other important  facts about L L  (k) grammars and 
languages. 

Substantial progress has also been made on the theory related to research 
problem 3. The author (and others) believed in 1967 that  Irons's original algorithm 
was "bo t t om u p "  as stated above, but it has subsequently become clear that  the 
true bot tom-up methods are those of Cocke, Younger, Kasami et al. (see [141). 
The method of Irons is neither top-down nor bottom-up, and it has become known 
as "left-corner pars ing";  the corresponding grammars, called L C (k), have been 
studied by  Rosenkrantz and Lewis [15], who showed that  all L C (k) languages are 
L L (k) languages and conversely. 

Appendix.  Answers  to the Exercises 

Exercise 1. {a"b"c'-q[n=O, t, 2 . . . .  }. Hence the PM can accept languages 
which are not context-free. 

Exercise 2. Condition t has been verified in the text. Condition 2 needs only 
be verified for the rule P - + a  ] b ] (E), where first (a) = a, first (b) = b, first ((E)) = ( 
are obviously disjoint. (In the other rules, m = 0  or n - -0 . )  Condition 3 is true 
because fo l low(L' )={) ,  q} has no letters in common with f i r s t ( + L L ' ) = { + } ;  
and f o l l o w ( P ' ) = 0 ,  + ,  q} has no letters in common with f i r s t (PP ' )={a ,  b, (}. 
Finally, the nonfalse nonterminals are L '  and P ' ,  so condition 4 holds. 

Exercise 3. If A-++A the grammar  is ambiguous and therefore not LL(k).  
If A -++Act for ct 4=s, and if A -++/~, where fl and ct are in T*, then A--~+flct" for 
arbitrarily large n. So examining the first k characters of fie" will not tell us 
how many  times to do the left production sequence corresponding to A-++Act. 

Exercise 4. Consider the initial steps of the derivation; if 

L , L L , 

S---~ fl, B fl3 -+ fl, fl, fl, -+ ~I A % 
L ,  L L ,  t 

then el=fl lY for some y in T*. Since k : ) ~ 4 = k : y ~ ,  the definition of LL(k)  
t L ,  . L , t _ _  

implies that  f12=f12. Thus if S---> ctxA~3 m m steps and if S--> ctlAct 3 in n>_m 
L * t .  

steps, the first m steps must be identical. I t  follows that  ~1A %-+ ~1 A e3 in n - -  m 
steps. By exercise 3, m = n. 

Exercise 5. The strings are {a"b2["/2]]n~O}. By looking 2 characters ahead, 
we apply S-+aaSbb if there are two a's, S--->a if one a but not two, S-->e 
otherwise. 

An equivalent L L  (t) g rammar  is 

S - + a T [ e  
T -+aUb[e  
U -+a Tb]b 
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