
Acta Informatica 1, 79-110 (1971)
�9 by Springer-Verlag 1971

Top-Down Syntax Analysis***
DONALD E . KNUTH

Received March 29, 1971

Summary. The theory and practice of classical "top-down" parsing methods is
presented in a tutorial manner.

1. Introduct ion

Since the earliest days when automatic syntax analysis by computer was
first a t tempted, many people (e.g. Barnet t [tl , Brooker and Morris [2],
Glennie, Conway I3], Schorre [4]) have used a method which has become known
as "top-down" analysis. The idea is still popular, and it is being used in many
current compilers.

The methods of the authors just cited may be described conveniently in
terms of a little computerlike device which we shall the Parsing Machine. The
discussion in these lectures will deal only with the syntactic properties of the top-
down method of analysis, not with the manner in which the syntactic structure is
la terusedto obtain semantic information about the string which is being analyzed.
Semantic information is, of course, the real reason why syntactic analysis is done
in the first place ; and top-down analysis is popular chiefly because it lends itself
so conveniently to semantic extensions. However, let us accept this fact on faith,
and concentrate only on the syntactic aspects.]?'or further details, see the
references cited above and [5, volume 5 and 71.

I t is important to mention that we shall be principally concerned with
unambiguous context-free grammars, which occur frequently in programming
languages and in input data formats for data-processing systems. The purpose
of these lectures is to point out some interconnections between theory and practice,
and to arlalyze the situations in which simple top-down syntax-oriented methods
can be guaranteed to work.

Section 2 introduces an abstract machine which resembles the interpretive
routines often used for top-down syntax analysis. Section 3 shows how BNF
grammars define programs for this machine in a natural way. Section 4 examines
the problem of proving such programs correct.

* This paper is essentially a transscript of five expository lectures which were
presented at the NATO International Summer School on Computer Programming,
in Copenhagen, Denmark, August, t967. The author wishes to thank V. Tixier and
R. Guedj for their assistance in preparing the first draft of these lecture notes.

** The publication of this paper was supported in part by IBM Corporation.

6 Acta Informatica, Vol. I

80 D.E. Knuth:

Section 5 is an exposition of the basic theory of context-free grammars.
Section 6 shows how to decide simple properties of grammars, and Section 7 gives
graph-theoretic constructions which are useful for grammatical analysis. These
results are applied in Section 8 to characterize all grammars for which a "no-
backup" program for the abstract machine is valid.

Section 9 contrasts top-down and bottom-up analysis from a theoretical
point of view, and Section 10 gives formal definitions of LR(k) and LL(k) gram-
mars. Section t t shows that the LL(Q languages are precisely those readable
without backup by the machine of Section 2. Final observations and research
problems are stated in Section t2.

2. The Parsing Machine (PM)

The Parsing Machine is an abstract machine which is designed to analyze
strings over a certain alphabet. I t scans an" input string" one character at a time,
from left to right, according to a program. A Parsing Machine program is made up
of a family of procedures calling each other recursively; the program itself is one
of these procedures. Each procedure attempts to find an occurrence of a particular
syntactic type in the input, and it returns with the value " t rue" or "false"
depending on whether it has been successful or not.

Let the input string be s 1 s~ ... s~, and let s h be the "current" character being
scanned by the machine.

All instructions have three fields : an op-code field, and two addresses, AT and
AF. Procedures are written using two types of instructions, corresponding to
two different forms of the op-code.

First Type: The op-code is a letter of the alphabet, a.

Second Type: The op-code is the location of a procedure enclosed within square
brackets [A~.

The effects of these instructions are as follows.

Type t : if sh=a then move past a (i.e., set h: = h + t) and go to AT
else 9o to AF.

Type 2: call on the procedure which starts in location A (recursively);
if it returns with value true then go to AT
e l s e if it returns with the value false then go to AF.

Each AT or AF field can contain either a location of an instruction, or one of
the two special symbols T or F. If it contains a T the procedure returns with the
value true. If it contains an F, the procedure returns with the value false, and h is
reset to the value it had when the procedure was called. (This implies that the
value of h is saved together with the return address, whenever a procedure is
called by all op-code of Type 2.)

An example program for the Parsing Machine should help to make these
definitions clear. In all our examples, we shall write PM instructions in an ad
hoc assembly language, using symbolic addresses and labels. A blank address
refers to the location of the instruction which appears on the line that immediately
follows the blank address.

Top-Down Syntax Analysis 81

Consider the following grammar for a language that bears some resemblance
to "Boolean expressions". (This grammar is written in a modified BNF notation,
using "-+" i n place of ":: = " and using capital letters in place of syntactic types
enclosed in brackets; for example, the first rule might be rewritten

(Boolean expression 5:: = (relation)l ((Boolean expression))

in BNF notation.)
B ~ R I (B)

R-+ E = E

E - ~ I b I (E + E)

(2.1)

Using the assembly language described above, we can write a corresponding
Parsing Machine program :

loc op-code AT AF

B JR] T
(F
[B] F
) T F

R [E] F

[E~ 1" F
E a T

b T
(F
[E] F
+ F
[El F
) T F

S [B] ERROR
q OK ERROR

Note the correspondence between the grammar and the PM program. The
last two lines of the program correspond to a further grammatical rule

S- - .Bq

where " q " is a special right delimiter symbol which appears only at the end of
the string being analyzed. The procedure S will go to " O K " if the entire string
being analyzed is a B followed by q, otherwise it will go to " E R R O R " .

If we set this PM program to work on the input string

(a = (b + a)) a = sl s2... sl0

starting at location S, the sequence of actions begins as follows. (Initially h =1"
i.e., the first character s 1 is being scanned.)

6*

82 D.E. Knuth:

Call B (/ ,= t)
Call R (h=l)

Call E (h = l)
Look for a: no
Look for b: no
Look for (: yes, set h: = 2
Call E (h = 2)

Look for a: yes, set h : = 3
Return, true.

Look for + : no
Return, false; set h:-----t

Return, false; set h : = l
Look for (: yes, set h: = 2
Call B (/ ,=2)

Call R (h = 2)

and so on. Ultimately the program will go to the location " O K " , and the history
of procedure calls with true returns will correspond to the following diagram
(" parsing") of the input :

S
I

B

B
k

R (2.2)
I I

E
L I

E

E E

a = b + a))

This diagram may be thought of as being constructed from the top to bot tom by
the Parsing Machine program.

The left portion of each bracket in the diagram is constructed when calling a
procedure, and the right portion is completed when returning from that procedure.

A study of this program should convince the reader that if s , . . . s~ is any
sequence of the letters {a, b, (, + ,), = , q}, with only s~ equal to q, the PM
program goes to OK when s, ... s~ is of the form B q, and its history of true returns
corresponds to a parse diagram; otherwise the PM program goes to ERROR. But
this assertion requires proof ! There are some grammars for which the corresponding
PM program will not work correctly, as we shall see. Therefore we want to examine
the general question, "For what grammars will the corresponding PM program
work ?"

3. PM Programming

To analyze this question, we must state carefully what we mean by the
"corresponding PM program."

Top-Down Syntax Analysis 83

First assume that, as in the above example, all BNF rules have been written
in the standard/orm

X - + Y~ [Y~] ... IY~,lz~z~ . . .Z , (3.t)

where m, n >_ O, m + n > O, and the Y's and Z's are either terminal characters
(i.e. letters of the alphabet) or nonterminal symbols (i.e., syntactic types). The
righthand side of (3.1) has m + t alternatives; if m = 0 , it has the simple form

X - + ZI Z~ ... Z.

If n = O the string Z I Z~. . . Z, is to be regarded as the emlbty string. The PM
program corresponding to a rule in standard form consists of the following m + n

1OC

X

instructions:
op-code AT AF

[Y~] T
[Y~] T

[Y~] T *
[z,] F

Ezo -,3 r
[Z,,] T F

(3.2)

Brackets around Yj or Z i in these op-codes should be removed when Yj or Z i is
a terminal symbol. The address denoted by" *" is to be replaced b y " T " if n ~- O,
otherwise it should be left blank.

The specification (3.2) has to be modified in the trivial case when both m = O
and n ~ O; then the rule is X-+e, where e denotes the empty string, and the
procedure X should always return true without advancing h. The latter effect can
be achieved by the PM program

X [Q] T T
Q a F F

where a is any terminal letter. Such anomalies are unimportant to the theory,
and they disappear when semantic operations are added to the Parsing Machine's
repertoire (see [5, volume 5]).

When a BNF rule is not in standard form, suppose that it has the form

x - > o~ l . . . IO~mlzl Z~ . . . z . (3.3)
where cq a m represent strings of terminal or nonterminal symbols. Then we
can change it into standard form by introducing new nonterminal symbols
Y1 Ym, adding the rules

rrn.-.+ o~ m

and replacing (3.3) by (3.1). For example if our BNF grammar has a rule

X-+AB]CD
we change it to the two rules

X-+ YIC D
Y-+A B

84 D.E. Knuth:

This allows the PM to back up if it has found an A which is not followed by B,
so tha t it can t ry the other alternative CD.

I t is important to observe that the order in which the PM rules are listed can
drastically affect the behavior of the machine. For example, if we have a pro-
duction

x ~al,,b (3.4)
the PM program will never recognize the string a b as X, since it will return true
once it finds the first alternative a. This production might therefore be written

X-+abla

and transformed into standard form.

A better idea is perhaps to avoid making the machine back up, b y " factoring"
this rule into

X-+a B
B~b[~ (3.5)

Further problems can still arise, however, if there is also another rule

Y-> X b b (3.6)

present in the grammar. Then it becomes impossible for the PM to know whether X
should be a or a b, without looking ahead to see how many b's follow. This can
lead to serious difficulties, which we will consider later; fortunately in many
practical situations these pathological problems do not arise.

The principle of " fac tor ing" which is shown in (3.5) is of some importance
in simplifying and speeding up PM programs. I t is convenient to rewrite (3.5) as

x-~a Wbl q
making use of "meta-brackets" [~ and ~ to group alternatives together so that it
is unnecessary to give a special name (like B in (3.6)) to the new syntactic type.

Consider now the following rule:

X-+albcklbdklbe/ikibeghiklbelik]beghik
This can be factored as

X->albIcldleUlghUli~k (3.7)
The introduction of factors in this case does not require procedure calls;

only branching is necessary, since the following PM program can be written for X:

X T

X 2

xl

a

b
c G
d G
e F
! X2
g F
h X~ F
i G
i x l F
k T F

F

Top-Down Syntax Analysis 85

I t can be shown that simplifications of this kind can always be made if we
redefine standard form (3.1) so that any of the Z's may be factored quantities
which themselves are in standard form. Rule (3.7) is an example of this more
general kind of standard form.

Another simplification can be made when we have the "closure" operator A*,
meaning "zero or more occurrences of A in a row", i.e. e or A or AA or AAA,
etc. The corresponding syntactic rule is

A*-+AA*[e

which, by our previous conventions, must be expanded into the following rather
long PM program, where Y corresponds to AA*:

loc op-code AT AF

A* IV] T T

Y [A] F
[A*] ~ F

A much faster code can be written which obviously is equivalent except that
it saves a great many subroutine calls:

A* [A] A* T (3.8)

We can extend the definition of standard form, (3.t), further, so that each Z
is allowed to be also of the form W* where W is a single symbol (terminal or
nonterminal).

The two simplifications just discussed, namely factoring and closure, are
instances of a general programming rule which allows us to replace a procedure
call by a "go t o " when this call is the last act of another procedure.

As an example, consider the ALGOL 60 definition of an unsigned number:

D ---->

U - +

U' -->
p - - ~

p ' ___>

S' -+

E -+
g ' --~

M - +

N - +

Here N is ALGOL'S (unsigned

oll]213 [4[51617]819
DU'

ule
.U

+1 - I ~ (3.9)

loS'U
E[e
*'lvp'
E[ME'.

number) , E is (exponent par t) , P is (fraction
par t) , etc. A slight change has been made to the definition of U, (unsigned
integer), since ALGOI.'s definition U---*UD]D would get the PM into a loop.
This phenomenon is called "left recursion", which is the bane of top-down
analysis; left recursion is analyzed further below.

86 D.E. Knuth:

Grammar (3.9) may be factored into the following standard form:

D -+0[1 [2[3 [4[5 [6[7[819

U--+ D D*

P - + . U

E ~ o l [+ l - I ~llU
N-+E] IVPI u WPI 8]]1] [[EI 81

The corresponding PM program is

10

+

N [E]
[P]
[u]
[P]

N I [E]

loc op-code AT AF

D 0 T
t T

9 T F
U [D] U' F
U' [D] U' T
P U F
E F

U
U U
T
N t

F
N t N I
T T

and it runs much more efficiently than the PM program corresponding to (3-9).
Note that the above code involves another simplification, in that procedure P was
not written

P F
[U] T F

Exercise 1.* For which set of strings does the following PM program go to

loc op-code AT AF

A a T
[A] F
b T F

e [A] T
c F T

C b T
[C] F
c T F

S [B] ERROR
D a D

[C] ERROR
-t OK ERROR

" O K " , starting at S ?

* Answers to the exercises appear at the close of this paper.

Top-Down Syntax Analysis 87

4. The Partial Back-Up Problem

Examples (3.4) and (3.6) show that the Parsing Machine's limited back-up
capability makes it unsuitable for general BNF grammars. But the example of
Boolean expressions in Section 2 shows that the PM can handle a reasonably
wide range of grammars of practical interest, and we now return to the question
posed at the end of that section: "For which BNF grammars, converted into
standard form (3.1) by the technique of (3.3) and then converted into PM
programs by the definition (3.2) supplemented by the inclusion of a right delimiter
q symbol as in Section 2, does the corresponding PM program accept precisely
the strings belonging to the language defined by the grammar ?" (In other words,
we go to OK if the string is in the language, otherwise to ERROR.)

Unfortunately this problem is unsolvable, i.e., there is no effective algorithm
which decides (from a given grammar) whether or not the PM program will
always work.

Proo]. Let ~ am,/31 fl~ be strings of a's and b's; and let z 1 z,~,
a, b, x be the terminal letters of our alphabet. Consider the following rules:

A -->zlcq]...Iz,noc,n]zxAocl]...IzmAcr m

B -->Zl& 1.-.]z,~,~]zz Bfl l l . . . [Zm Bfl,,
C-->A x
D---~Bxx
E - + C [D
S -+Eq

Here A represents the strings

L(A) = { z i z , , zi l

for n = t , 2, 3 ; and B similarly represents

L (B) = . . .

The whole language S is A x ~ or B x x-~.

Consider a string ~ belonging to A ; the PM will recognize that ~ x belongs to E.
Consider ~ not belonging to A but belonging to B; the PM will recognize that

x x belongs to E.
Consider ~ belonging to both A and B; ~ x x will not be recognized as belonging

to E, although it does.
Therefore the partial back-up method will work for this language if and only

if L (A) c~ L (B) = 0. This happens if and only if there do not exist indices/1 i , ,
n > 0, such tha t ~il -.. ~i,=flil ' ' . fli,.

But this is "' Post 's Correspondence Problem," and it is well known that no
effective algorithm can decide if such indices exist. If we could solve the partial
back-up problem, we could solve Post 's problem, but that is impossible. This
completes the proof.

Althongh the partial back-up problem is unsolvable, we can of course solve it
in special cases. Sufficient conditions which can be used in practical situations

88 D.E. Knuth:

are given in [5, volume 5]. The most important special case of the partial back-up
problem is the "No backup problem" which we will solve below.

A method of top-down analysis which includes "full backup", i.e. which
works on all BNF grammars that are not left recursive, has been elegantly described
by Floyd [6]; we will not treat Floyd's general method here, since most cases of
practical interest for programming languages can be done with little or nobacking
up.

5. Context-Free Grammars

At this point it is convenient to introduce (in a somewhat more careful manner
than in the previous sections) the basic definitions of context-free grammars,
together with some notations associated with the mathematical theory of
languages. We are going to solve a special case of an unsolvable problem, so it is
worthwhile to prepare ourselves for this task.

An alphabet X is a set of distinguishable symbols, and X* denotes the set of
strings on the alphabet X, i.e. all sequences x 1 ... x. for n >_-- 0, where each xj is

in X. I t is convenient to denote strings of symbols by lower case Greek letters
~,/3 ; as we have already observed, the empty (or "null") string is denoted
by e. The length of a string ~, written {0c{, is the number of symbols it contains.
When ~ and/3 are strings, their concatenation ~fl is the string obtained by writing
the symbols of fl in order after the symbols of ~. I t follows from these definitions,
for example, that

1 , 1 - - 0 , 1 /31=1 1+1/31 �9

A set of strings is usually denoted by a capital letter, such as A, B The
concatenation of two sets of strings is defined by the rule

Note that

and

A B ={~fl l~eA and flEB}.

A{e} ={e}A = A

(5.t)

Note that

A+----_AA*=A*A, A*--_{e}uA +.

A 0 = 0 A = 0 .

(The symbol 0 denotes the empty set.)

We now define "powers" of a set of strings:

A ~ = i f n = 0 t h e n {e} e l s e AA ~-z. (5.2)

Two further operations of importance are the closure A* and the positive closure A §
of a set of strings:

. . . . O A ~ (5.3) A * = lira [AOuAI• u A'~ ~o
~----~ o o

A § U A" (5.4)

Top-Down Syntax Analysis 89

A context-[ree grammar ff has four parts:

(a) A terminal alphabet T, whose elements are denoted here by lower case
letters a, b, c and occasionally by special symbols auch as parentheses and
plus signs.

(b) A nonterminal alphabet N, whose elements are denoted here by upper case
letters A, B, C

(c) An initial symbol S, which is a nonterminal symbol that represents the
"sentences" of the language defined by G.

(d) A set of productions ~, which is the most important part of the grammar ft.
A production is a relation denoted by

A---~O (5.5)

(read, "A directly produces 0"), where A EN and OE(Nu T)*; i.e., A is a non-
terminal symbol and 0 is a string of terminals and/or nonterminals.

Each set of productions ~ defines a relation on the strings (N • T) * ; we say

~ A ro --.~o~ O o) (5.6)

(with respect to ~) if A--~ 0 is a production of ~ . In other words, we say that
9--~v2 if and only if there are strings e, w, A, 0 such that 9 = e A o) , v 2 =eOco,
and A --~ 0 is in ~.

The relation 9 ~ ~o between strings, defined in (5.6), can be extended as follows :
We say

9 ~*~o (5.7)

if 9-----~o, or if 9---~o, or if there is another string~ such that 9--~-->~0 or in
general if

9 = 9 0 , 9i--~-9i+i for O<=?'<n, and 9n=~v (5.8)

for some n=>0 and some strings 90, 91 , - . . , 9, . Relation (5.7) may be read,
"q) produces or equals ~" . Similarly we write

9 -~+~; (5.9)

if (5.8) holds for some n ~>1 and some strings 90 %. Relation (5.9) may be
read, " 9 produces ~p"; it excludes the case n = 0 , which in (5.8) is the trivial
case that 9 =Y. Note the analogy between (5.7)-(5.9) and (5.3)-(5.4).

In general if r denotes any relation between members of any set, we obtain
the reflexive transitive closure r* and the transitive closure r § of r as a new relation
which is often of interest, by using definitions (5.7), (5.8), (5.9) and replacing
"-->" by r.

Now we are ready to define the significance of a context-free grammar
fg ---- (7, N, S, P). The language L (if) defined by ff is the set

L(ff) = { z E T*IS--~+z}, (5.t0)

i.e., the set of all terminal strings which the initial symbol produces.

90 D.E. Knuth:

If 0 is any string of terminals and/or nonterminals, we also write

L (0) = {T E T*[0 -+* 3} (5.1 t)

with respect to an understood context-free grammar ~.

We say that
A -+ 01l 02[... I 0n (5A2)

is a rule of the grammar fr if and only if

{A--~ OI, A -+ O 2 A-+On}

is the set of all productions of fr whose lefthand side is A.

The reader should be able to see the connection between context-free grammars,
as defined here, and BNF syntax specifications as in the ALGOL Report. The only
difference is in the notational conventions.

As an example of a context-free grammar, consider the following rules

E - + L ~ + L ~ *

L - + P P*

e- albl(E)
written in terms of the factoring and closure conventions of the previous section.
From now on we will eliminate these conventions, in order to make the theory
simpler to develop without decreasing our power of expression; the above grammar
can be written

E --~LL'

L ' -+ + L L'i~

L --+PP'
p, p p , l, (5.t3)

P ~albl(E)
S - + E ~

Note the introduction of the last rule, according to the conventions of our Parsing
Machine.

The set of productions (5.t3) may be said to define a context-free grammar f#
whose six terminal symbols are

a,b, +,(,) ,-~

and whose six nonterminal symbols are

E , L ' , L , P ' , P , S .

The initial symbol is S. The grammar has six rules and ten productions. (Note the
distinction between a rule and a production, see (5.12).) The language defined by

resembles simple arithmetic expressions; a typical element of L (~r is

a(b +ab)-q

Top-Down Syntax Analysis 9t

6. The Null String Problem

One of the first things we can do with a context-free grammar is to determine
which nonterminal symbols can produce the null string; i.e., given a nonterminal
symbol A, does A -++ ~ or not ?

A simple "marking" algorithm applies to this problem. We can imagine all
nonterminal symbols as either "marked" or "unmarked" , where initially all
are unmarked. Now we repeatedly do the following operation: Find a production
in ~ whose lefthand side is unmarked, and whose righthand string contains
nothing but marked symbols. (In particular, ~ is such a string. Terminal symbols
are regarded as unmarked.) If no such productions exist, the algorithm terminates;
otherwise, mark the nonterminal symbol on the left of the production which was
found, and repeat the process.

At the conclusion of this algorithm, a nonterminal A can produce e if and only
if it is marked. For it is clear that every marked nonterminal produces e. Con-
versely, if A-++e in n steps, then if n = l , A must be marked; and if n > l , we
have some 0 such that A-+ 0-+ + s. Here each symbol in 0 must produce e in
less than n steps, so by induction on n each symbol ill 0 is marked; hence A is
marked.

Essentially the same algorithm can be used to determine whether or not
L (A) is empty, i.e. whether A produces any terminal strings or not. We use the
same procedure, except that all terminal symbols are regarded as if they were
marked.

7. Directed Graphs
A directed graph is defined by a set of vertices and a set of ordered pairs of

vertices called arcs. Each arc may be thought of as an arrow drawn from one
vertex to another vertex (or to the same vertex). An oriented path in a directed
graph from vertex V to vertex W is a sequence of vertices V 0 V,, such that
V = V 0, there is an arc from ~ to ~+1 for O<--_f<n, V.----W,, and n ~ t . There
obviously are algorithms to determine whether or not there is an oriented path from
V to W,, given two vertices V and W of a finite directed graph, since we need only
consider paths which go through each vertex at most once.

Given any context-free grammar f#, we can draw its dependency graph. Here
the vertices are the terminal and nonterminal symbols, and the arcs go from
A to x if x appears on the righthand side of a production whose lefthand side is A.

For the grammar of example (5.t3) we have the dependency graph

There is an obvious correspondence between directed graphs and binary re-
lations on objects of an abstract set S. If we have a relation r, we can consider the

92 D.E. Knuth:

directed graph whose vertices are the elements of S and whose arcs go from V to W
if and only if V r W . Conversely each directed graph defines a relation on its
vertices. There is a path from V to W if and only if Vr§ in the notation of
Section 5.

In the case of context-free grammars, let us write

X d Y (" X directly depends on Y")

if and only if there is an arc from X to Y in the dependency graph; i.e., if and
only if there is a production rule X~+~Yf l in the grammar, for some strings

and ft.
Now X d + Y (" X depends on Y") is easily seen to be equivalent to the state-

ment that
X--~ + c~ y ~o

for some strings ~ and oJ. If Xd+X, we say X is recursive (it depends on itself).
This means there is an oriented cycle in the dependency graph. In (7.t), we see
that all nonterminals are recursive except S.

A nonterminal symbol A of N is called useless if either L (A) = 0 (i.e., no
terminal strings can be derived from A), or if S does not depend on A (i.e., the
strings derivable from A have no effect on L (N)). The discussion above shows
that we can determine all useless nonterminal symbols. These (and all productions
involving them) can be removed from the grammar with no effect on the language,
provided that S itself is not useless.

In addition to the dependency graph, we can also define the right-dependency
graph, which is a subgraph of the dependency graph of a grammar. In this case
we draw an arc from X to Y if and only if there is a production of the form

X~YX1 . . .X , ,
where n ~ 0, and where each of X x X~ can produce the null string. For the
grammar (5.t3), we have the right-dependency graph

Interchanging left and right
graph:

|

(7.2)

in these definitions gives the leJt-dependency

) �9

(7.3)

Top-Down Syntax Analysis 93

Let us say X t Y (" X directly left-depends on Y ") if there is an arc from X
to Y in the left-dependency graph ; X l § Y (" X left-depends on Y") is seen to be
equivalent to saying that

X---~+yo~

for some string ~. We say that X is le]t recursive if XI+X. Similarly, we define
X r Y , Xr+Y,, etc. from the right-dependency graph. In grammar (5.t3), we see
from (7.3) that no nonterminals are left recursive. The graph (7.2) shows that L '
and P ' are right recursive.

The dependency graphs can be used to determine several quantities of interest
to us. If A is a nonterminal symbol, let first (A) denote the set of all terminal
symbols which can be the initial character of a string in L (A). I t is clear from the
above discussion that

first (A) = { a E TIA l+a}

so we can read off the first characters of any nonterminal by inspecting (7.3).
Similarly, last (A) can be obtained from a consideration of the right dependency
graph.

Finally, we want to define the set

follow (A) : {a E T IS--+* 0 A a q~ for some strings 0, 9}.

I t is not difficult to see that, when there are no useless nonterminals, this is
equivalent to saying follow(A) is the set of all terminal a such that there is a
production of the form

W--~o~X BI ... B n Y~o (7.4)

where n ~ 0, B 1 through B~ can produce the null string, Y is either terminal or
nonterminal, X r * A , and YI* a. This means we can compute the set follow (A).

(The reason (7.4) can be assumed is that we may consider the production in
the derivation of S-+* OA a ~ which "combines" A and a.)

For the example

A first,

S ab
E ab
L ab
P ab
L' +
P' ab

grammar (5A3), we have

A) last (A) follow (A)

ab))
a b) +) -~
a b) + a b () ~
a b))
a b) +) -q

8. The No-Backup Case

In Section 4 we showed that it was, in general, difficult (in fact impossible)
to decide when the Parsing Machine will properly parse all strings belonging to
the language defined by a context-free grammar ~. The tools developed in Sec-
tions 5, 6, and 7 now give us enough ammunition to at tack the most important
special case of the partial backup problem, namely when the Parsing Machine
never has to back up at all; i.e., when h never is decreased. This has two practical
consequences: First, we can be sure that the total time required for syntactic

94 D.E. Knuth:

analysis is bounded by a constant times the length of the input string. Second, a
computer program may read the input one character at a t ime and need not save
the characters previously read.

Analysis of the general PM program (3.2) corresponding to a standard form
program shows that h can back up only when a false exit occurs after Z~, Z 3
or Z~. This suggests tha t we redefine (3.2) as follows:

X EY~] T

IY~] T �9
Ez] F (8.t)
[Z2] E R R O R

[Z~] T E R R O R

We can now take any context-free grammar ~ with rules grouped as in (3.3);
these rules can be transformed into standard form (3.t) and the corresponding
"no -backup" program (8.1) can be constructed. The auxiliary rule introducing
" q " can also be added as before.

We would now like our machine to behave as follows, when it starts at loca-
tion S, scanning s I s 2 ... s. where only s~ is the " q " symbol: If s 1 ... s~ is not in
L (~), the program should go to ERROR. If sl . . . s~ i s in L (~), and if we have any
diagram such as (2.2) which corresponds to a derivation S - - ~ * s 1 . . . s,,, then the
actions of the PM should correspond precisely to that diagram (in the obvious
manner).

If the no-backup PM program satisfies the conditions of the preceding para-
graph, we shall s a y " The no-backup method works for ~#." Note that this condition
implies in particular that ~ is u n a m b i g u o u s , i.e. that no two different diagrams can
be given for the strings of L (~). For if there are two diagrams, the PM program
is supposed to correspond to both of them, and this clearly cannot happen since
the PM executes only one set of actions. Unambiguous grammars are of principal
interest for programming languages.

We now wish to answer the question, "Does the no-backup method work
for ~ ?" when ~ is given. In order to s tudy this problem, we first want to replace
a grammar with rules of the form (3.1) by another grammar whose rules are of
a more simple form, and which generates the same language with only a slightly
different structure.

Given a rule X - + Y ~ I . . . I Y , ~ I Z 1 Z ~ . . . Z,~, we can simplify it as follows: If m ~ t ,
change the rule to the two rules

x - > Y lX'

Y l...lY ,lz . . .

This does not change the essential behavior of the no-backup method, it just
introduces redundant procedure calls. We can now suppose that m G I , and that
all rules have the form

X - + Y I Z

Top-Down Syntax Analysis 95

If n > t in the first form, replace the rule by the two rules

X -+Z1X'

X ' ~ Z 2 . . . Z~

where X' is another new nonterminal symbol.

Again the no-backup method is unaffected. We may assume now that each
rule are of one of four types

X ~ Y I Z

X--~ Y Z

X -+ Y

X--+ e

If Y or Z is a terminal (e.g., X - + a l Z), then introduce a new rule of the form
X'-+a and change the Y or Z to the X' (e.g., X--~X' IZ).

All rules now have one of five forms:

Type 1. X- -~Y IZ

Type 2. X--+ Y Z

Type 3. X---~Y

Type 4. X - + a

Type 5. X--~ e

Here Y, Z are nonterminal symbols and a is terminal. Moreover, we may
assume that no "useless" non-terminals are present. Let us say that a grammar
satisfying these conditions is simple.

8.1 Necessary Conditions

We are now going to study four necessary conditions on grammars of the
simple form we have just defined, which must be satisfied if the no-backup
method works. Later we will prove that these four conditions are also sufficient,
and this will solve the no-backup problem.

First Condition. No nonterminal is left recursive.

Otherwise it will be necessary for procedure X to call itself without advancing
the input, when the machine is mimicking a derivation of S-+*o~Xco-++o~X Ow
--~+ 3, where z is terminal. (Such strings 3, ~, w, and 0 exist because X is assumed
to be left-recursive but not useless.)

Lemma. Whenever a grammar has no left recursive nonterminal symbols, it is
possible to order the nonterminal symbols X 1, X 2 X t in such a way that

Xpl§ Xq only i] q < p.

(In our example (5A3), L', P, P', L, E, S is such an ordering.)

Pro@ This is a general result about the vertices of a finite directed graph
which contains no oriented cycles. If there is no left recursion, the left dependency

7 Acta Informatica, Vol. I

96 D.E. Knuth:

graph has no oriented cycles. The vertices of such a graph can always be ordered
V1, V 2 V~ in such a way that there is a path from Vp to Vq only if q < p. (This
is tile problem of "topological sorting" which is analyzed in more detail in
[5, volume 1].)

We can always find a vertex from which no arcs emanate, otherwise we could
find an oriented cycle. Such a vertex may be placed first in the ordering and
removed from the graph, and this operation may be repeated until all vertices
have been removed. The lemma has therefore been proved.

Let us now restate the five types of rules under this ordering assumption:

Type 1. XF--~X q [X~ q<p and r<p.
Type 2. Xp--->XqX, q<p; and if Xq--~+,, also r<p.

Type 3- Xp--~ Xq q < p.
Type 4. XK+a
Type 5. Xp--->

Another condition must be satisfied if the no-backup method works, as
illustrated in the following grammar.

X - + Y [Z

Y--~Y1Y 2

Z -~Z1 Z2
Zx--~ a
Z2--~ b

Yl-~ a
L (X) = {ab, ac}.

The Parsing Machine cannot parse a b as X without backing up. More generally,
we can see that the following condition must be true.

Second Condition. For every rule o/ Type 1, first (Xq) n first (X,) ----0.

To prove that this is necessary suppose there is a terminal symbol a in both
first(Xq) and first(X,). Thus Xq---~+aO and X,---~+a9 for some terminal strings
0 and 9. Now if the Parsing Machine can parse a O as Xq and then as Xp, it
cannot parse a 9 as X, and then as Xp, since the Xp procedure calls Xq first, and
this must advance past the letter a.

Another case ill which the no-backup method has difficulty is reflected in the
following grammatical rules:

W--+X Y
X-+ YIZ
Z --+ a
Y-+a L(W) =-{aa, a}.

The Parsing Machine cannot parse the string "a" without backing up. Thus,
we find a further condition, analogous to the second.

Top-Down Syntax Analysis 97

Third Condition. For every rule o/
first (Xq) n follow (Xp) =- O.

Here finally is another grammar
discussed so far, but which still causes

type 1 where X , can produce the null string,

which satisfies all three of the conditions
the no-backup method to fail:

S --~ X-i

X--+ Y]Z

Y - + W T

W-~ VI U

T -+ a

Z ---> b

V ---> c

U-.+ e L(S) ={ca-i , a-t, b-i}.

Here the Parsing Machine program will not accept the string "b-i ". The
procedure U cannot ever return false, so procedure W cannot return false, and
neither can Y. Therefore the procedure for X will never call Z in any circumstances l
This suggests adding yet another constraint.

Fourth Condition. For every rule o/ type 1, Xq must not be "non/alse"; in
other words it should not correspond to a procedure which will never return/alse.

We see that a nonterminal Xp is non[alse if and only if its rule is

a) of Type 5 (Xp--~ e);

or b) of Type 3 and Xq is nonfalse;

or c) of Type 2 and Xq is nonfalse;

or d) of Type t and Xq or X, is nonfalse.

This shows how we can check condition 4, by sequentially determining which
of X1, X 2 Xt are nonfalse (in that order).

8.2 Solution to the No-Backup Problem

Theorem. I f conditions 1, 2, 3 and ~l hold in a simple grammar (r then the no-
backup method works.

(In fact, it is possible to prove that condition I follows from conditions 2, 3,
and 4, so that condition t is redundant.)

The proof uses two lemmas. Let s l . . . sn be the input string, and let s h be
the current symbol on the input string. We may assume by condition I that the
nonterminal symbols have been put into an appropriate order X 1, X 2 as
specified in Section 8.t.

Lemma 1. Under tile assumptions of the theorem, if Xp is not nonfalse and
if s h r first (Xp), then the Parsing Machine instruction [Xp] L1L 2 will transfer to L 2.

Proo]. The proof is by induction on p, considering the ordering we have defined.

Assume that the lemma is true for all Xq, when q < p . (In particular when p = t
we are not assuming anything; proofs by induction are often convenient to state
in this way, without singling out the case p = t .)

98 D.E. Knuth:

First case:
Xp-+Xq]X, q<p, r<p.

Since Xp is not nonfalse, Xq and X, cannot be nonfalse, by the definition of
tha t property. Also since shCfirst(Xp), we have shCfirst(Xq) and shCfirst(X,).
Now the PM program for procedure Xp is

loc op-code AT AF

Xp [Xq] T (8A)
[X,] T F

Therefore by induction the machine will go to F.

Second case:
Xp---~XqX, q <p.

Since Xp is not nonfalse, neither is Xq. And since shCfirst(Xp), obviously
shCfirst (Xq). Now the PM program for Xp is

Xp [Xq] F
EX,] T ERROR (8.2)

so, by induction, procedure Xp will go to F.

Third case:
Xp-+ Xq q < p.

This case is obvious.

Fourth case:

The PM program is
Xp-+a.

xp a T F (8.3)

and since sh=~ a this case is also obvious.

Fifth case:
X p - + e.

This situation cannot occur since Xp is nonfalse.

Lemma 2. Under the assumptions of the theorem, let Xp-+*sh... sk_l,
where h ~ k. (If h = k , this means that Xp-+* e.) Assume also that she follow (Xp).
Then the Parsing Machine instruction IXp]/_aL2 will transfer to Lx with h increased
to k. Furthermore the actions of the machine during this t ime correspond to the
derivation of Xp---~* s h sk_ ~.

Proo]. The proof is by induction on k - - h = m; and, for fixed m, on p. Thus,
we assume that the lemma is true for all p and m' when m ' < m, and for all p'<p
when m is given.

First case:
Xp-+XqlX,, q<p, r<p.

The program for procedure Xp is (8A).

Subcase t a:
X q - - ~ * s h . . . s ~ _ x .

Top-Down Syntax Analysis 99

By induction the lemma is true for Xq, thus it is also true for Xp.

Subcase t b :
Xr--->* S h � 9 S k _ 1 �9

If h = k (null string) then by condition 3 sh=skEf~ so shCfirst (Xq).
On the other hand if h > k, shCfirst (Xq) by condition 2. Furthermore Xq is not
nonfalse, by condition 4.

Thus by Lemma t, procedure Xp will call IX,I; and since r<p , the lemma
holds by induction.

Second case:
XK-->X qX,, where Xq-->*s h ... si_ 1,

Xr----~*s ~ . . . S k _ l ,

for some]'; h ~<] --< k.

The PM program is (8.2). If h < f the lemma is true for Xq and 32, (by induction,
since k - -] is less than k - h and q is less than p). If h =], then Xq can produce
the null string, so r < p ; again the procedure Xp will go to T by induction.

Third case :
Xp-~ Xq, q < p.

The lemma is valid for X e so it holds for Xp.

Fourth case :
Xp--->.a.

We must have sh=a and k = h + l . The PM program (8.3) clearly goes to T and
advances h.

Fifth case :
X p - . + ,s.

Here h must equal k; the PM program for Xp always goes to T without changing h.

This completes the proof of Lemma 2.

Now the theorem can be proved as follows. If s 1 ... s. is in L (N), the machine
goes to " O K " , and its actions correspond to a given derivation, by applying
Lemma 2 to the program for S.

If s I ... s, is not in L (~), the machine cannot go to " O K " , for each time the
machine goes to " O K " its actions obviously correspond to a derivation in the
grammar; this derivation must be of the entire string, since only s~--- q.

The remaining possibility is that sl ... s~ is not ill L (N) but the PM program
never terminates. This is impossible, since the grammar is not left-recursive; we
can prove by induction on n - h and (for fixed h) on p that no call of [Xp] can
result in an infinite loop. The latter proof is straightforward as in Lemmas t and 2;
but it is not completely trivial, since the PM can go rather slowly as in the grammar

Xl---)- 8
X~ ~ X~ X~
X3-~ X~ X 2
X ~-~ X~ X~
Xs--~ a
Xr--~ X~ X 5

t 00 D .E . Knuth :

8.8 Summary

The four conditions of Section 8.t, derived for the special case of simple
grammars, can now be translated back into the general si tuation in which all
rules are of the s tandard form

X - - - , Y~I. . . I Y , , I Z , . . . Z , (8.4)

The theorem of Section 8.2 and the simplification procedure discussed just before
Section 8.t imply tha t the following four conditions are necessary and sufficient
for the val idi ty of the no-backup method, provided there are no useless non-
terminal symbols :

t. The g rammar contains no left-recursive nonterminals.

2. The sets first (Y~) , first (Ym), first (Z1... Z,) are mutua l ly disjoint, i.e.
they have no letters in common.

3. If Zx. . . Z,--~* e then first (Y/) contains no letters in common with follow (X).

4. Y1 , Y,, are not nonfaise.

In this case a nonterminal symbol X corresponding to the rule (8.4) is defined
to be nonJalse if and only if either

(a) Yj is nonfalse, for some f (1 <=j<=m)

or (b) n = 0

or (c) n > 0 and Z 1 is nonfalse.

As remarked earlier, condition t is redundant since it can be deduced from
the other conditions.

I t is possible to design a ra ther efficient method for checking these conditions:
First do a " topological so r t " of the nonterminal symbols, based on the left-
dependency graph, and at the same time determine the sets first (X) and check
conditions 2 and 4 for each X as it is emit ted by the topological sorting algo-
rithm. Then compute follow (X) for each X and test condition 3.

Exereise 2. Does the no-backup method work on the g rammar (5.13) ? Prove
your answer, by testing the four conditions above.

9. An Overview of Top-Down and Bottom-Up Analysis

In addition to the relation --> which has been defined in connection with a
context-free g rammar ff in Section 5, we can also define the restricted relation

L
~Am--->o~Oo~ (9.t)

if A->(9 is a product ion and if eE T*. This means A is the leftmost nonterminal
in e A co. Similarly we define

R
o~ A o)---> aOco (9.2)

L , R + L , R +
if ~o E T*. These relations can be extended as before to -> , -> , -> , -> ; the
relation

L ~--~+~

m a y be read, "~0 left-produces ~o".

Top-Down Syntax Analysis 10l

There are in general many sequences of strings al, a2 a,~ such that

S --->0"1---> " �9 �9 - + O ' m - + ' [

is a derivation of the terminal string z in a contextfree grammar; whenever a i
contains at least two nonterminal symbols, we have a choice as to which non-

terminal to replace first. The importance of the ~ and ~ relations is that, for
. L

every diagram such as (2.2), there is exactly one corresponding -+ derivation, and

exactly one corresponding ~ derivation. Thus, using the example (2.2) and the
grammar (2.1), we have.

and

S L B~ L (B)q ~ (R)q

(E=E)~L (a=E) q

L (a=(e+e))~
L (a=(b+f))~
X (a=(b+a))~

S ~ B-~ -~ (B)q ~ (R)q

(E=E)q L (E=(E+E))q
(E=(e+a))~
(e=(b+a))~
(a=(b+a))~

(9.3)

(9.4)

as the corresponding left and right derivations. A context-free grammar fr is
unambiguous if each string in L (fr has exactly one left derivation (or equivalently,
exactly one right derivation).

The general problem of syntactic analysis is to start with a string T of terminal
symbols, e.g., (a = (b + a)) 4 , and to find (when possible) a sequence of produc-
tions such that S-+* z.

The bottom-up method (proceeding from left to right) attacks this problem
by first "reducing" the above string to

then reducing this to

and then

and

(e = (b + a)) q

(E=(E+a))~

(e = (~ + E))

(E = E)

etc. (A reduction is the opposite of a production.) The leftmost possible reduction
is applied at each step. This process continues until we reduce everything to S,
or show that this would be impossible. Note that the sequence of intermediate
steps is exactly the reverse of the right production sequence (9.4). In general,
bottom-up analysis (/rom left to right) proceeds by right reductions, i.e. by reversing
the right production sequence.

t 02 D.E. Knuth :

The top-down method (proceeding from left to right) attacks this problem
somewhat differently. I t starts with S, and attempts to reach the given terminal
string ~ by a sequence of left productions, as in (9.3)- At each step we must decide
which production to apply to the leftmost nonterminal symbol. In general,
top-down analysis (]rom left to right) proceeds by left productions.

Similarly we can describe top-down and bottom-up methods which go from
right to left, by interchanging the r61es of left and right in the above discussion.
(Currently some extended methods which are more symmetrical between left and
right are being explored by several people.)

Various "backup" procedures can be given for reconsidering some alternatives
of the derivation sequence that later prove to be incorrect. Principal interest,
however, centers on the cases where the syntactic analysis proceeds without
backing up: then each step of the derivation sequence is known to be the only
possible step. Such procedures are usually called deterministic analysis methods.

In a previous paper [71, the author has described the general conditions under
which strings of a grammar can be analyzed deterministically, bottom-up, from
left to right, looking k characters ahead of where the next reduction step will be
made. Such grammars are called L R (k) grammars. The analogous property for
top-down analysis, first suggested by Lewis and Stearns [81, will be called here
the "LL(k)" property; it means a top-down analysis is to be performed from
left to right, looking k characters ahead of the terminal symbols which have
already been matched. Formal definitions of these concepts appear in the next
section; for the present, let us quickly review the significance of four properties a
context-free grammar may have;

LL (k) : scan from the left, using left productions

L R (k) : scan from the left, using right reductions

RL (k) : scan from the right, using left reductions

R R (k) : scan from the right, using right productions.

(Ill each case, k represents the number of symbols of "lookahead," used to decide
what production or reduction to perform next. A "right reduction" is the opposite
of a "right production" (9.2).) L L (k) and R R (k) correspond to top-down analysis.

10. Definitions of L L (k) and L R (k)

Let us now introduce some useful notations. If k is a nonnegative integer and
is a string, we define

I i f I~] =>k t h e n the first k characters of
k: c~ = [e lse cc (t0A)

/ if [~l =>k t h e n the last k characters of c~
~: k = [e l s e m (10.2)

Furthermore if A is a set of strings, we write

k: A ={h: ~r~cA}, (10.3)
A: k = { ~ : hlm~A }. (t0.4)

Top-Down Syntax Analysis 103

Note t ha t first (A) = (1 : L (A)) r~ T = (1 : L (A)) - - {~} ; also if k:/~ = k: y then

h: (~t~) = ~: (~).
The informal discussion of Section 9 can now be formula ted precisely in t e rms

of this notat ion.

Definition. A context-free g r a m m a r is L R (k) if the following condit ion holds
e t t

for all ~1, ~i, ~ , and as in (N ~9 T)*, all ~a and eta in T*, and all A, A' in N:

S3+,~1A ~ 3 - + ~ 1 CX2 ~ 3

and

R t ! t R t ! t
S-+*oqA 0~3--~ ~10r a

and

implies tha t
! i

~1=~1, A = A ' , and ~ 2 = ~ .

Definition. A context-free g r a m m a r is L L (k) if the following condition holds
t !

for all ~1, ~4, ~4 in T * and all c~2, %, ~2, in (N n T) * :

L L L ,

and
L L , L , t

S-+*oqA ~ 3 - - - ~ 1 ~ f l O C 3 - - ~ (XI(X 4

and
t

implies tha t
~ 2 = ~t2 "

Let us now define a general izat ion of the "follow" function t ha t allows us to
derive fur ther informat ion about the LL(k) proper ty : I f flET*, A qN, and k
is a nonnegat ive integer, let

Fk(A,fl) =k:{OIOET* and S-->*flAO}. (t0.5)

Thus in our earlier notat ion,

follow (A) = uT.F1 (A, fl)

if A # S and if we regard q as an element of T.

Theorem (Lewis and Stearns). I / A -+~1 and A --~o~ 2 are two distinct productions
o/an L L (k) grammar, and i/ fl is in T*, then

[k: (L (@ 01)] n [k: (L (~2) 02)] = 0 (t 0.6)

/or all 01, 02EFk(A, fl).

(In fact this condit ion can be proved equivalent to the LL(k) prope r ty ;
see [8]. The condition leads to a fairly simple a lgori thm to test whether a contex t -
free g r a m m a r is LL (k) for a given k.)

104 D.E. Knuth :

Proo/. Suppose there are strings co, 01, 02, such that

(L 01)

01, 0 2 ~ F k (A , t3).

We will show that this implies ~1 = ~=, which contradicts the hypothesis that
A - ~ , and A-+~2 are distinct production rules.

The proof is mostly a matter of translating between notations. By hypothesis,
! t

there are 0x and 02 in T* such that

t t p t
S --->"13 A 01, S -+ * fl d 02, k:01=01, k:02=02.

Hence by considering the corresponding left-derivations, there are strings Yl, Y2 in
(N w T)* such that

L , t , t

SLy. * 13Ayl, S-+ 13Ay2, y l -->'* 01, y2 "-->" 02.

There are also T1, ~ in L (%), L (g2) respectively such that

k:T1 0'1 =k: ~1 01=a~ =k: T~ 02=k:~2 0'9..

Therefore 71=~2 (see Exercise 4).

Now we have
L , L L t

S--+ 13Ayl--->13a1~'l--+*13~;1 01

L , L L t s-+ SA -+13 r2-+*13 2
so %=~2 by the definition of LL(k). Q,E.D.

Exercise 3. Show that an L L (k) grammar with no useless nonterminals has
no left-recursive nonterminals.

Exercise 4. Show that every L L (k) grammar satisfies the following condition:
For all cq, ~4, ~ in T* and all ~a, c~'a in (Nw T)*, if

s L , . t L ,
-+ ~1A ~3--~ 0~10~ 4

and
s L , . t L ,

-+ aiM ~3 --> %~4
alld

t
k:0~4:k:~4

t then % = eta.

11. L L (1) Grammars

The special case k =1 in the preceding discussion of L L (k) seems to be quite
a bit simpler than the case of higher values of k, and it is directly related to our
previous discussion of the "no-backup method," so we shall now study it in
detail.

Suppose G is a grammar with no useless nonterminals ; let us test the condition
of the last theorem for the case k =1. Let A be a nonterminal symbol whose

Top-Down Syntax Analysis IO5

rule is
A - ~ l [~ 2 I . . . [a ~, m ~ t . (t1.1)

If p 4: q, and if a E first (ap), b E first (C~q), condition (10.6) says tha t a 4= b. Fur ther -
more we cannot have bo th ~p-+* e and ~q---~* e, since (10.6) would be violated if
we take 01=02. And if ~p--~*e and bEfirst(%), condition (t0.6) says t ha t
bCFI(A, fl) for any/5, i.e. bCfollow(A).

Thus we have three conditions which are necessary for each rule (t t .1) of an
LL (t) g r a m m a r :

t . first(~l) f i r s t (g ,) are mutua l ly disjoint, i.e. contain no common
elements.

2. At most one of ~1 , c% can produce a null string.

3. I f ~p~*e, then first(%) has no elements in common with follow(A), for
l ~ q ~ m , q4=P.

(Note: Conditions I and 2 can be combined b y saying tha t

(I : L (%)) n (t : L (%)) = 0 when p ~ q .)

Now these three conditions are obviously su//icient to show tha t f# is L L (t):
For if we are to replace A b y one of ~x ~,~, the choice of which ~i to use is
uniquely determined b y examining the first character of the terminal str ing which
u l t imate ly is to be produced b y A.

Note tha t g r ammars sat isfying the no-backup condition s ta ted at the end of
Section 8 also sat isfy the three conditions above, so they are LL (1)grammars .
Bu t a g r a m m a r such as

B---~Ab]Cd

A --~a A I e
(tl.2)

C--~cC[c

S---~ Bq

which is LL(t) does not sat isfy the non-backup condition. Both A and C are
nonfalse, so the Parsing Machine will not be able to work with this g rammar ,
regardless of whether we write

B-~Ab[Cd or B-+Cd]Ab

before conver t ing to s tandard form.

However , it is possible to put any L L (1) g r a m m a r into a fairly simple s tandard
form, which can be t rea ted b y the Pars ing Machine.

Let us say an L L (k) language is a set of strings which can be defined b y an
L L (k) grammar.

Theorem. Any L L (I) language can be given a grammar/or which all rules have
one o/ the two/orms

Type t. A --+al~l]... [amO~ m

Type 2. A- -~ i [. . .] a , , o~ , , , [e

106 D.E. Knuth :

Here a 1 a,~ are distinct terminal characters; and in rules o/ Type 2, no a i is in
follow (A).

(Conversely, such a grammar is obviously L L (I), and it obviously also satisfies
the conditions of the no-backup method. So the L L (t) languages are precisely
those analyzable by some no-backup PM program.)

Pro@ Given a grammar f# satisfying conditions t, 2, 3 above and with no
useless nonterminals, we can prove (see for example exercise 3) that f~ has no
left-recursive nonterminals. Thus we can order the nonterminal symbols A 1,
A 2 A t where Apl§ only if q < p .

I t follows that the rule for A 1 must be of either Type t or Type 2 as in the
theorem.

Suppose that the rules for nonterminals Aq have the form of Type 1 or Type 2,
for all q < p. Suppose further that, if

Aq-->aql ~tql]...[aqmgOCqm.[e and q < p , (1t.3)

is a rule of Type 2, we also have added the additional rule

A;-+aql %1 [... [aq,,~o~q,~, (11.4)

to the grammar, where A'q is a new nonterminal symbol. We will show how to
change the rule of A p so that it has the form of either Type I or Type 2.

Let the rule for Ap be

If ~i begins with a nonterminal symbol, so that c~ i has the form Aqfl, we must
have q < p . If the rule for Aq is of Type 2, replace c~ i by two alternatives A'gfi[fl,
where A ~ is given by (t 1.4). This leaves us with an L L (1) grammar: for first (A q) n
first(fl) (first(A'q) n follow (A q) ----O; and first(A'q)w first(fl) =first(~i) has no
letters in common with first (~i) for i ~ 1'. Furthermore if/3-->* e, we must verify
that first (A'q) has no letters in common with follow (At), and this is true because
follow (Ap) _(follow (A q) when /5-->* ~.

By repeating this process, we may assume that A t has a rule

where none of the ~i begins with a nonterminal whose rule is of Type 2. Now if ~i
begins with a nonterminal A q, we may write ~ i = A q/5, where q < p , and the rule
for A q is

Therefore we may replace the alternative ~i by

aql OCql fl] . . . [aqmq O~qm. /5

and we still clearly have an L L (t) grammar. Thus the rule for Ap can ult imately
be reduced to either Type t or Type 2, and the proof is complete. (The auxiliary
rules (11.4) are not needed after the construction has terminated.)

Top-Down Syntax Analysis 107

As an example, the grammar (tl.2) above would be changed to

A-->aA]e
C-+cCJ ~
B--->aA blblcCdld (ta.5)
S - - a A b,q Ib,q leCd ,q Id 'q

(Here B has become useless.)

Grammars in while all rules are of Type t are obviously LL(t) . They have
been called "s-grammars" by Korenjak and Hopcroft [93, who proved (among
other things) that the equivalence problem is solvable for s-languages. In other
words, if ~1 and f#z are s-grammars, we can decide if L (f#J = L (~2)-

The grammar (ta.5) can be transformed into an s-grammar for the same
language if we introduce new nonterminal symbols [Ab] and [Cd] standing
respectively for L (A b) and L (C d). The s-grammar is

[A b 3 --~ a [Ab 3]b

[ca] -~c [Cd]]d
S-->a[A b] -q Ib-q lc[Cd] -q Id ,q

While preparing these lectures, the author found that many other L L (t)
grammars are amenable to similar transformations; so it seemed reasonable to
make the conjecture that, whenever L is an LL(t) language, then L,q is an
s-language. If this conjecture were true, it would provide a solution to the equiv-
alence problem for LL (l) languages.

One grammar which seemed to provide a counterexample to this conjecture
was the following:

P - - ~ + P P I x A
A --~aAle (11.6)
S---> P ,q

This represents Polish prefix notation, with the binary operator + and the vari-
ables x, xa, xaa The author made several fruitless attempts tofindans-gram-
mar for this language, before finally hitting on the following trick: We can
write P = P ' A , where P' represents those strings of P not ending in a; and we
can therefore give the following s-grammar for the language (t t.6):

P'--~+ P'[AP'][x
[A p'] ~ a [A P']I + P' [A P'] lx

S--> P ' [A -q]
[A ,q] -+a[A ,q] I --I

This example gave added weight to the conjecture.

However, R. Ktirki-Suonio found a simple counterexample [10], which
shows that ~ cannot in general be removed from an LL(I) grammar followed
by -~. Thus, the null string plays an important role in top-down analysis.

Exercise 5 (suggested by Kate1 ~ulik II). Show that the following grammar
is L L (2). Is there an L L (1) grammar for the same language ?

S-+aaSbblale

108 D.E. Knuth :

12. Concluding Remarks
It is natural to inquire which is better, top-down or bottom-up analysis ? I t

is difficult to give a complete answer to this question, but some comments can
be made.

First, every L L (k) grammar is an L R (k) grammar. (This can be proved using
a rather involved but intuitively clear argument. A careful and clear proof of
this fact would make a suitable master's thesis and would be an instructive
project.)

On the other hand, the "Boolean expression" grammar (2.t) is LR(O) but
not LL(k) for any k: The string (((((((((((a =b))))))))))) needs to be parsed quite
differently from the string

(((((((((((a +b) +b)+b)+b) +b) +b) +b) +b) +b)+b)+b) =b
which begins with the same t 2 symbols. I t can in fact be shown that this is not
even an LL (k) language, i.e. there is no equivalent LL (k) grammar. Thus, bottom-
up analysis can deterministically parse more general languages than top-down
analysis can.

On the other hand when we are fortunate enough to have an LL (t) grammar,
we have more flexibility in applying semantic rules, since we know what produc-
tion is being used be/ore we actually process its components. This foreknowledge
can be extremely important in practice. The bottom-up procedure only discovers
what is present after it has scanned the text. A theoretical model which demon-
strates this advantage of top-down analysis has been discussed at length by Lewis
and Stearns [81.

A simple model for bottom-up analysis which might be considered the bottom-
up analogue of the no-backup Parsing Machine is the technique of "simple
precedence grammars" developed by Wirth and Weber It1]. The bottom-up
analog of the partial backup method is the original method of Irons [t2~, which
has not yet been given a theoretical treatment.

In conclusion, here are some research problems which are (perhaps) listed in
increasing order of difficulty:

t. Is every LL(k) language, k-->t, an LL(t) l anguage? (The corresponding
statement is true for L R (k) and L R (t) languages.)

2. Is the equivalence problem solvable for LL (t) languages ? (The work of
Korenjak and Hopcroft [91 makes this likely.)

3. Can the method of Irons [t2J be analyzed theoretically in a fashion anal-
ogous to the partial-backup method discussed above ?

4. What class of languages can the Parsing Machine accept ? (See Exercise t.)
5. Is the equivalence problem decidable for L R (1) languages ? (This seems to

be the most important unsolved problem at the present time; it is also desirable
to answer the question for very special cases, such as Wirth's precedence gram-
mars [t 11.)

Postscript, Added May 1971. Research problems t and 2 have now been
resolved. R. Kiirki-Suonio proved that the LL (k + t) grammar

S--+aSA[s
A--->akbS[c

Top-Down Syntax Analysis t 09

defines a non-LL (k) language [t @ D. J. Rosenkrantz and R. E. Stearns showed
that the equivalence problem for L L (k) grammars is solvable [t3]. Both of these
papers establish a number of other important facts about L L (k) grammars and
languages.

Substantial progress has also been made on the theory related to research
problem 3. The author (and others) believed in 1967 that Irons's original algorithm
was "bo t t om u p " as stated above, but it has subsequently become clear that the
true bot tom-up methods are those of Cocke, Younger, Kasami et al. (see [141).
The method of Irons is neither top-down nor bottom-up, and it has become known
as "left-corner pars ing"; the corresponding grammars, called L C (k), have been
studied by Rosenkrantz and Lewis [15], who showed that all L C (k) languages are
L L (k) languages and conversely.

Appendix. Answers to the Exercises

Exercise 1. {a"b"c'-q[n=O, t, 2 }. Hence the PM can accept languages
which are not context-free.

Exercise 2. Condition t has been verified in the text. Condition 2 needs only
be verified for the rule P - + a] b] (E), where first (a) = a, first (b) = b, first ((E)) = (
are obviously disjoint. (In the other rules, m = 0 or n - -0 .) Condition 3 is true
because fo l low(L')={) , q} has no letters in common with f i r s t (+ L L ') = { + } ;
and f o l l o w (P ') = 0 , + , q} has no letters in common with f i r s t (PP ')={a , b, (}.
Finally, the nonfalse nonterminals are L ' and P ' , so condition 4 holds.

Exercise 3. If A-++A the grammar is ambiguous and therefore not LL(k).
If A -++Act for ct 4=s, and if A -++/~, where fl and ct are in T*, then A--~+flct" for
arbitrarily large n. So examining the first k characters of fie" will not tell us
how many times to do the left production sequence corresponding to A-++Act.

Exercise 4. Consider the initial steps of the derivation; if

L , L L ,

S---~ fl, B fl3 -+ fl, fl, fl, -+ ~I A %
L , L L , t

then el=fl lY for some y in T*. Since k :) ~ 4 = k : y ~ , the definition of LL(k)
t L , . L , t _ _

implies that f12=f12. Thus if S---> ctxA~3 m m steps and if S--> ctlAct 3 in n>_m
L * t .

steps, the first m steps must be identical. I t follows that ~1A %-+ ~1 A e3 in n - - m
steps. By exercise 3, m = n.

Exercise 5. The strings are {a"b2["/2]]n~O}. By looking 2 characters ahead,
we apply S-+aaSbb if there are two a's, S--->a if one a but not two, S-->e
otherwise.

An equivalent L L (t) g rammar is

S - + a T [e
T -+aUb[e
U -+a Tb]b

t t 0 D . E . Knuth: Top-Down Syntax Analysis

References
1. Barnett , M. P., Futrelle, R. P.: Syntactic analysis by digital computer. Comm.

ACM 5, 515-526 (t962).
2. Brooker, R .A. , Morris, D.: A description of Mercury Autocode in terms of a

phrase structure language. Ann. Review Auto. Programming 2, 29-65 (1961).
See also S. Rosen, Comm. ACM 7, 403-414 (1964).

3. Conway, M. E. : Design of a separable transit ion-diagram compiler. Comm. ACM
6, 396-408 (1963).

4. Schorre, D. V. : META II, a syntax-oriented compiler writing language. Proc.
ACM National Conf. 19, D I . 3 . t - D I . 3 . t i (1964).

5. Knuth, D . E . : The Ar t of Computer Programming (to be published in seven
volumes).

6. Floyd, R. W. : The syntax of programming languages- -a survey. I E E E Transac-
tions EC-13, 346-353 (1964).

7. Knuth, D. E. : On the translat ion of languages from left to right. Information and
Control 8, 607-639 (1965),

8. Lewis I I , P. M., Stearns, R. E.: Syntax-directed transduction. J. ACM 15, 464-
488 (1968).

9. •orenjak, A. J., Hopcroft, J . E . : Simple deterministic languages. Proc. I E E E
Symp. Switching and Automata Theory 7, 36-46 (1966).

10. I~firki-Suoni, R. : Notes on top-down languages. BIT 9, 225-238 (1969).
1 t. Wirth, N,, Weber, H. : Euler, a generalization of ALGOL, and its formal definition.

Comm. ACM 9, 13-23, 25, 89-99, 878 (1966).
12. Irons, E . T . : A syntax-directed compiler for ALGOL 60. Comm. ACM 4, 51-55

(1961).
13. Rosenkrantz, D. J., Stearns, R. E.: Properties of deterministic top-down gram-

mars. Information and Control 17, 226-256 (1970).
14. Earley, J. : An efficient context-free parsing algorithm. Comm. ACM 13, 94-102

(1970).
15. Rosenkrantz, D . J . , Lewis II , P .M. : Deterministic left corner parsing. Proc.

I E E E Symp. Switching and Automata Theory 11, t39-152 (1970).

Prof. Donald E. Knuth
Computer Science Depar tment
Stanford Universi ty
Stanford, California 94305
U.S.A.

