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1 - Introduction

Lua is an extension programming language designed
to support general procedural programming with data
description facilities. It also offers good support for
object-oriented programming, functional programming,
and data-driven programming. Lua is intended to be
used as a powerful, lightweight, embeddable scripting
language for any program that needs one. Lua is im-
plemented as a library, written in clean C, the common
subset of Standard C and C++.

Being an extension language, Lua has no notion of a
‘main’ program: it only works embedded in a host client,
called the embedding program or simply the host. The
host program can invoke functions to execute a piece of
Lua code, can write and read Lua variables, and can
register C functions to be called by Lua code. Through
the use of C functions, Lua can be augmented to cope
with a wide range of different domains, thus creating
customized programming languages sharing a syntactical
framework. The Lua distribution includes a sample host
program called 1ua, which uses the Lua library to offer a
complete, standalone Lua interpreter, for interactive or
batch use.

Lua is free software, and is provided as usual with no
guarantees, as stated in its license. The implementation
described in this manual is available at Lua’s official web
site, www.lua.org.

Like any other reference manual, this document is dry
in places. For a discussion of the decisions behind the
design of Lua, see the technical papers available at Lua’s
web site. For a detailed introduction to programming in
Lua, see Roberto’s book, Programming in Lua.

2 - Basic Concepts

This section describes the basic concepts of the language.

2.1 - Values and Types

Lua is a dynamically typed language. This means that
variables do not have types; only values do. There are
no type definitions in the language. All values carry their
own type.

All values in Lua are first-class values. This means
that all values can be stored in variables, passed as ar-
guments to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, num-
ber, string, function, userdata, thread, and table. Nil is
the type of the value nil, whose main property is to be
different from any other value; it usually represents the
absence of a useful value. Boolean is the type of the val-
ues false and true. Both nil and false make a condition
false; any other value makes it true. Number represents
real (double-precision floating-point) numbers. Opera-
tions on numbers follow the same rules of the underly-
ing C implementation, which, in turn, usually follows
the IEEE 754 standard. (It is easy to build Lua inter-
preters that use other internal representations for num-
bers, such as single-precision floats or long integers; see
file luaconf.h.) String represents immutable sequences

of bytes. Lua is 8-bit clean: strings can contain any 8-bit
value, including embedded zeros ("\0’).

Lua can call (and manipulate) functions written in Lua
and functions written in C (see §3.4.9).

The type userdata is provided to allow arbitrary C
data to be stored in Lua variables. A userdata value is a
pointer to a block of raw memory. There are two kinds
of userdata: full userdata, where the block of memory is
managed by Lua, and light userdata, where the block of
memory is managed by the host. Userdata has no prede-
fined operations in Lua, except assignment and identity
test. By using metatables, the programmer can define op-
erations for full userdata values (see §2.4). Userdata val-
ues cannot be created or modified in Lua, only through
the C API. This guarantees the integrity of data owned
by the host program.

The type thread represents independent threads of
execution and it is used to implement coroutines (see
§2.6). Do not confuse Lua threads with operating-system
threads. Lua supports coroutines on all systems, even
those that do not support threads.

The type table implements associative arrays, that is,
arrays that can be indexed not only with numbers, but
with any Lua value except nil and NaN (Not a Number,
a special numeric value used to represent undefined or
unrepresentable results, such as 0/0). Tables can be het-
erogeneous; that is, they can contain values of all types
(except nil). Any key with value nil is not considered
part of the table. Conversely, any key that is not part of
a table has an associated value nil.

Tables are the sole data structuring mechanism in Lua;
they can be used to represent ordinary arrays, sequences,
symbol tables, sets, records, graphs, trees, etc. To rep-
resent records, Lua uses the field name as an index.
The language supports this representation by providing
a.name as syntactic sugar for a["name"]. There are sev-
eral convenient ways to create tables in Lua (see §3.4.8).

We use the term sequence to denote a table where the
set of all positive numeric keys is equal to 1..n for some
integer n, which is called the length of the sequence (see
§3.4.6).

Like indices, the values of table fields can be of any
type. In particular, because functions are first-class val-
ues, table fields can contain functions. Thus tables can
also carry methods (see §3.4.10).

The indexing of tables follows the definition of raw
equality in the language. The expressions a[i] and a[j]
denote the same table element if and only if i and j are
raw equal (that is, equal without metamethods).

Tables, functions, threads, and (full) userdata values
are objects: variables do not actually contain these val-
ues, only references to them. Assignment, parameter
passing, and function returns always manipulate refer-
ences to such values; these operations do not imply any
kind of copy.

The library function type returns a string describing
the type of a given value (see §6.1).



2.2 - Environments and the Global Envi-
ronment

As will be discussed in §3.2 and §3.3.3, any reference to a
global name var is syntactically translated to _ENV.var.
Moreover, every chunk is compiled in the scope of an
external local variable called _ENV (see §3.3.2), so _ENV
itself is never a global name in a chunk.

Despite the existence of this external _ENV variable
and the translation of global names, _ENV is a completely
regular name. In particular, you can define new variables
and parameters with that name. Each reference to a
global name uses the _ENV that is visible at that point in
the program, following the usual visibility rules of Lua
(see §3.5).

Any table used as the value of _ENV is called an enwvi-
ronment.

Lua keeps a distinguished environment called the
global environment. This value is kept at a special in-
dex in the C registry (see §4.5). In Lua, the variable _G
is initialized with this same value.

When Lua compiles a chunk, it initializes the value of
its _ENV upvalue with the global environment (see load).
Therefore, by default, global variables in Lua code re-
fer to entries in the global environment. Moreover, all
standard libraries are loaded in the global environment
and several functions there operate on that environment.
You can use load (or loadfile) to load a chunk with a
different environment. (In C, you have to load the chunk
and then change the value of its first upvalue.)

If you change the global environment in the registry
(through C code or the debug library), all chunks loaded
after the change will get the new environment. Previ-
ously loaded chunks are not affected, however, as each
has its own reference to the environment in its _ENV vari-
able. Moreover, the variable _G (which is stored in the
original global environment) is never updated by Lua.

2.3 - Error Handling

Because Lua is an embedded extension language, all Lua
actions start from C code in the host program calling a
function from the Lua library (see lua_pcall). When-
ever an error occurs during the compilation or execution
of a Lua chunk, control returns to the host, which can
take appropriate measures (such as printing an error mes-
sage).

Lua code can explicitly generate an error by calling
the error function. If you need to catch errors in Lua,
you can use pcall or xpcall to call a given function in
protected mode.

Whenever there is an error, an error object (also called
an error message) is propagated with information about
the error. Lua itself only generates errors where the error
object is a string, but programs may generate errors with
any value for the error object.

When you use xpcall or lua_pcall, you may give
a message handler to be called in case of errors. This
function is called with the original error message and re-
turns a new error message. It is called before the error
unwinds the stack, so that it can gather more informa-
tion about the error, for instance by inspecting the stack
and creating a stack traceback. This message handler

is still protected by the protected call; so, an error in-
side the message handler will call the message handler
again. If this loop goes on, Lua breaks it and returns an
appropriate message.

2.4 - Metatables and Metamethods

Every value in Lua can have a metatable. This metatable
is an ordinary Lua table that defines the behavior of the
original value under certain special operations. You can
change several aspects of the behavior of operations over
a value by setting specific fields in its metatable. For
instance, when a non-numeric value is the operand of an
addition, Lua checks for a function in the field __add
of the value’s metatable. If it finds one, Lua calls this
function to perform the addition.

The keys in a metatable are derived from the event
names; the corresponding values are called metameth-
ods. In the previous example, the event is "add" and the
metamethod is the function that performs the addition.

You can query the metatable of any value using the
getmetatable function.

You can replace the metatable of tables using the
pdf-setmetatablesetmetatable function. You cannot
change the metatable of other types from Lua (except
by using the debug library); you must use the C API for
that.

Tables and full userdata have individual metatables
(although multiple tables and userdata can share their
metatables). Values of all other types share one single
metatable per type; that is, there is one single metat-
able for all numbers, one for all strings, etc. By default,
a value has no metatable, but the string library sets a
metatable for the string type (see §6.4).

A metatable controls how an object behaves in arith-
metic operations, order comparisons, concatenation,
length operation, and indexing. A metatable also can
define a function to be called when a userdata or a table
is garbage collected. When Lua performs one of these op-
erations over a value, it checks whether this value has a
metatable with the corresponding event. If so, the value
associated with that key (the metamethod) controls how
Lua will perform the operation.

Metatables control the operations listed next. Each
operation is identified by its corresponding name. The
key for each operation is a string with its name prefixed
by two underscores, __; for instance, the key for opera-
tion ‘add’ is the string "__add".

The semantics of these operations is better explained
by a Lua function describing how the interpreter executes
the operation. The code shown here in Lua is only illus-
trative; the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation. All
functions used in these descriptions (rawget, tonumber,
etc.) are described in §6.1. In particular, to retrieve the
metamethod of a given object, we use the expression

metatable(obj) [event]
This should be read as

rawget (getmetatable(obj) or {}, event)



This means that the access to a metamethod does not

invoke other metamethods, and access to objects with no

metatables does not fail (it simply results in nil).
For the unary - and # operators, the metamethod is

called with a dummy second argument. This extra ar-
gument is only to simplify Lua’s internals; it may be
removed in future versions and therefore it is not present

in the following code. (For most uses this extra argument
is irrelevant.)

e "add": the + operation.
The function getbinhandler below defines how Lua
chooses a handler for a binary operation. First, Lua
tries the first operand. If its type does not define a
handler for the operation, then Lua tries the second
operand.

function getbinhandler (opl, op2, event)
return metatable(opl) [event] or
metatable (op2) [event]
end

By using this function, the behavior of opl+op2 is

function add_event (opl, op2)
local 01,02 = tonumber(opl),tonumber (op2)
if ol and o2 then -- both are numeric?
return ol + o2 >+’ here is ’add’
else -- at least one is not numeric

local h = getbinhandler(opl,op2,"__add")

if h then
-- call handler with both operands
return (h(opl, op2))

else -- no handler available
error(---)
end
end

end

e "sub": the - operation. Behavior similar to the
"add" operation.

e "mul": the * operation. Behavior similar to the
"add" operation.

e "div": the / operation. Behavior similar to the
"add" operation.

e "mod": the 7% operation. Behavior similar
to the "add" operation, with the operation
ol - floor(ol/02)*02 as the primitive operation.

e "pow": the ~ (exponentiation) operation. Behavior
similar to the "add" operation, with the function
pow (from the C math library) as the primitive op-
eration.

e "unm": the unary - operation.
function unm_event (op)

local o = tonumber (op)

if o then -- operand is numeric?
return -o -- ’-’ here is ’unm’
else -- the operand is not numeric.

-- Try to get a handler
local h = metatable(op).__unm
if h then

-- call the handler

return (h(op))

else -- no handler available
error(---)
end

end
end
e "concat": the .. (concatenation) operation.
function concat_event (opl, op2)

if (type(opl) == "string" or
type(opl) == "number") and
(type(op2) == "string" or
type(op2) == "number") then
return opl .. op2 -- primitive
else
local h = getbinhandler(opl,op2,
"__concat")
if h then
return (h(opl, op2))
else
error(:-)
end
end
end
e "len": the # operation.
function len_event (op)
if type(op) == "string" then
return strlen(op) -- primitive
else
local h = metatable(op).__len
if h then
return (h(op)) -- call handler
elseif type(op) == "table" then
return #op -- primitive
else -- no handler available: error
error (--)
end
end

end
See §3.4.6 for a description of the length of a table.

e "eq": the == operation. The getequalhandler
function defines how Lua chooses a metamethod for
equality. A metamethod is selected only when both
values being compared have the same type and the
same metamethod for the selected operation, and
the values are either tables or full userdata.

function getequalhandler (opl, op2)
if type(opl) = type(op2) or
(type(opl) ~= "table" and
type(opl) ~= "userdata") then
return nil -- different values
end
local mml = metatable(opl).__eq
local mm2 = metatable(op2).__eq
if mml == mm2 then return mml
else return nil end

end
The ‘eq’ event is defined as follows:

function eq_event (opl, op2)
if opl == op2 then -- primitive equal?
return true -- values are equal
end
-- try metamethod
local h = getequalhandler(opl, op2)
if h then

return not not h(opl, op2)



else
return false
end
end

Note that the result is always a boolean.

"1t": the < operation.
function 1t_event (opl, op2)

if type(opl) == "number" and
type(op2) == "number" then
return opl < op2 -- numeric
elseif type(opl) == "string" and
type(op2) == "string" then
return opl < op2 -- lexicographic
else
local h = getbinhandler(opl,op2,"__1t")
if h then
return not not h(opl, op2)
else
error ()
end
end
end

Note that the result is always a boolean.

"le": the <= operation.
function le_event (opl, op2)

h = metatable(table).__index

if h == nil then return nil end
else

h = metatable(table).__index

if h == nil then

error(:-)
end
end
if type(h) == "function" then
return (h(table, key)) -- call handler
else return hlkey] -- or repeat
end
end
"newindex": The  indexing  assignment

table[key] = value. Note that the metamethod
is tried only when key is not present in table.

function settable_event (table, key, value)
local h
if type(table) == "table" then
local v = rawget(table, key)
-- if key is present, do raw assignment
if v "= nil then
rawset(table, key, value); return end
h = metatable(table).__newindex
if h == nil then
rawset(table, key, value); return end
else

if type(opl) == "number" and
type(op2) == "number" then
return opl <= op2 -- numeric

elseif type(opl) == "string" and

type(op2) ==
return opl <= op2

"string" then
-- lexicographic

else
local h = getbinhandler(opl,op2,"__le")
if h then
return not not h(opl, op2)
else
h = getbinhandler(opl,op2,"
if h then
return not h(op2, opl)
else
error (--)
end
end

1t")

end
end

Note that, in the absence of a "le" metamethod,
Lua tries "1t", assuming that a<=b is equivalent to
not (b<a).

As with the other comparison operators, the result
is always a boolean.

"index": The indexing access table[key]. Note
that the metamethod is tried only when key is not
present in table. (When table is not a table, no
key is ever present, so the metamethod is always
tried.)

function gettable_event (table, key)
local h
if type(table) == "table" then
local v = rawget(table, key)
-- if key is present, return raw value
if v "= nil then return v end

h = metatable(table).__newindex
if h == nil then
error(---)

end
end
if type(h) == "function" then

h(table, key,value) -- call handler
else hlkey] = value -- or repeat
end

end

e "call": called when Lua calls a value.

function function_event (func, ...)
if type(func) == "function" then
return func(...) -- primitive call
else
local h = metatable(func).__call
if h then
return h(func, ...)
else
error(---)
end
end
end

2.5 - Garbage Collection

Lua performs automatic memory management. This
means that you have to worry neither about allocating
memory for new objects nor about freeing it when the
objects are no longer needed. Lua manages memory au-
tomatically by running a garbage collector to collect all
dead objects (that is, objects that are no longer accessible
from Lua). All memory used by Lua is subject to auto-
matic management: strings, tables, userdata, functions,

threads, internal structures, etc.



Lua implements an incremental mark-and-sweep col-
lector. It uses two numbers to control its garbage-
collection cycles: the garbage-collector pause and the
garbage-collector step multiplier. Both use percentage
points as units (e.g., a value of 100 means an internal
value of 1).

The garbage-collector pause controls how long the col-
lector waits before starting a new cycle. Larger values
make the collector less aggressive. Values smaller than
100 mean the collector will not wait to start a new cycle.
A value of 200 means that the collector waits for the total
memory in use to double before starting a new cycle.

The garbage-collector step multiplier controls the rela-
tive speed of the collector relative to memory allocation.
Larger values make the collector more aggressive but also
increase the size of each incremental step. Values smaller
than 100 make the collector too slow and can result in
the collector never finishing a cycle. The default is 200,
which means that the collector runs at ‘twice’ the speed
of memory allocation.

If you set the step multiplier to a very large number
(larger than 10% of the maximum number of bytes that
the program may use), the collector behaves like a stop-
the-world collector. If you then set the pause to 200, the
collector behaves as in old Lua versions, doing a complete
collection every time Lua doubles its memory usage.

You can change these numbers by calling lua_gc in
C or collectgarbage in Lua. You can also use these
functions to control the collector directly (e.g., stop and
restart it).

As an experimental feature in Lua 5.2, you can change
the collector’s operation mode from incremental to gen-
erational. A generational collector assumes that most
objects die young, and therefore it traverses only young
(recently created) objects. This behavior can reduce the
time used by the collector, but also increases memory us-
age (as old dead objects may accumulate). To mitigate
this second problem, from time to time the generational
collector performs a full collection. Remember that this
is an experimental feature; you are welcome to try it, but
check your gains.

2.5.1 - Garbage-Collection Metamethods

You can set garbage-collector metamethods for tables
and, using the C API, for full userdata (see §2.4). These
metamethods are also called finalizers. Finalizers allow
you to coordinate Lua’s garbage collection with external
resource management (such as closing files, network or
database connections, or freeing your own memory).

For an object (table or userdata) to be finalized when
collected, you must mark it for finalization.

You mark an object for finalization when you set its
metatable and the metatable has a field indexed by the
string "__gc". Note that if you set a metatable without
a __gc field and later create that field in the metatable,
the object will not be marked for finalization. However,
after an object is marked, you can freely change the __gc
field of its metatable.

When a marked object becomes garbage, it is not col-
lected immediately by the garbage collector. Instead,
Lua puts it in a list. After the collection, Lua does the

equivalent of the following function for each object in
that list:

function gc_event (obj)
local h = metatable(obj).__gc
if type(h) == "function" then
h(obj)
end
end

At the end of each garbage-collection cycle, the final-
izers for objects are called in the reverse order that they
were marked for collection, among those collected in that
cycle; that is, the first finalizer to be called is the one as-
sociated with the object marked last in the program. The
execution of each finalizer may occur at any point during
the execution of the regular code.

Because the object being collected must still be used by
the finalizer, it (and other objects accessible only through
it) must be resurrected by Lua. Usually, this resurrection
is transient, and the object memory is freed in the next
garbage-collection cycle. However, if the finalizer stores
the object in some global place (e.g., a global variable),
then there is a permanent resurrection. In any case, the
object memory is freed only when it becomes completely
inaccessible; its finalizer will never be called twice.

When you close a state (see lua_close), Lua calls the
finalizers of all objects marked for collection, following
the reverse order that they were marked. If any finalizer
marks new objects for collection during that phase, these
new objects will not be finalized.

2.5.2 - Weak Tables

A weak table is a table whose elements are weak refer-
ences. A weak reference is ignored by the garbage col-
lector. In other words, if the only references to an object
are weak references, then the garbage collector will col-
lect that object.

A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys,
but prevents the collection of its values. A table with
both weak keys and weak values allows the collection of
both keys and values. In any case, if either the key or
the value is collected, the whole pair is removed from
the table. The weakness of a table is controlled by the
__mode field of its metatable. If the __mode field is a
string containing the character ’k’, the keys in the table
are weak. If __mode contains ’v’, the values in the table
are weak.

A table with weak keys and strong values is also called
an ephemeron table. In an ephemeron table, a value is
considered reachable only if its key is reachable. In par-
ticular, if the only reference to a key comes through its
value, the pair is removed.

Any change in the weakness of a table may take effect
only at the next collect cycle. In particular, if you change
the weakness to a stronger mode, Lua may still collect
some items from that table before the change takes effect.

Only objects that have an explicit construction are
removed from weak tables. Values, such as numbers and
light C functions, are not subject to garbage collection,
and therefore are not removed from weak tables (unless



its associated value is collected). Although strings are
subject to garbage collection, they do not have an explicit
construction, and therefore are not removed from weak
tables.

Resurrected objects (that is, objects being finalized
and objects accessible only through objects being final-
ized) have a special behavior in weak tables. They are
removed from weak values before running their finalizers,
but are removed from weak keys only in the next collec-
tion after running their finalizers, when such objects are
actually freed. This behavior allows the finalizer to ac-
cess properties associated with the object through weak
tables.

If a weak table is among the resurrected objects in a
collection cycle, it may not be properly cleared until the
next cycle.

2.6 - Coroutines

Lua supports coroutines, also called collaborative multi-
threading. A coroutine in Lua represents an independent
thread of execution. Unlike threads in multithread sys-
tems, however, a coroutine only suspends its execution
by explicitly calling a yield function.

You create a coroutine by calling coroutine.create.
Its sole argument is a function that is the main function
of the coroutine. The create function only creates a new
coroutine and returns a handle to it (an object of type
thread); it does not start the coroutine.

You execute a coroutine by calling coroutine.resume.
When you first call coroutine.resume, passing as its
first argument a thread returned by coroutine.create,
the coroutine starts its execution, at the first line
of its main function. Extra arguments passed to
coroutine.resume are passed on to the coroutine main
function. After the coroutine starts running, it runs until
it terminates or yields.

A coroutine can terminate its execution in two ways:
normally, when its main function returns (explicitly or
implicitly, after the last instruction); and abnormally,
if there is an unprotected error. In the first case,
coroutine.resume returns true, plus any values re-
turned by the coroutine main function. In case of errors,
coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When
a coroutine yields, the corresponding coroutine.resume
returns immediately, even if the yield happens inside
nested function calls (that is, not in the main func-
tion, but in a function directly or indirectly called
by the main function). In the case of a yield,
coroutine.resume also returns true, plus any values
passed to coroutine.yield. The next time you re-
sume the same coroutine, it continues its execution
from the point where it yielded, with the call to
coroutine.yield returning any extra arguments passed
to coroutine.resume.

Like coroutine.create, the coroutine.wrap func-
tion also creates a coroutine, but instead of returning the
coroutine itself, it returns a function that, when called,
resumes the coroutine. Any arguments passed to this
function go as extra arguments to coroutine.resume.
coroutine.wrap returns all the values returned by

coroutine.resume, except the first one (the boolean er-
ror code). Unlike coroutine.resume, coroutine.wrap
does not catch errors; any error is propagated to the
caller.

As an example of how coroutines work, consider the
following code:

function foo (a)

print("foo", a)

return coroutine.yield(2*a)
end

co = coroutine.create(function (a,b)
print("co-body", a, b)
local r = foo(a+1)
print("co-body", r)
local r,s = coroutine.yield(a+b,a-b)
print("co-body",r,s)
return b,"end"

end)

print("main",coroutine.resume(co,1,10))
print ("main",coroutine.resume(co,"r"))
print("main",coroutine.resume(co,"x","y"))
print("main",coroutine.resume(co,"x","y"))

When you run it, it produces the following output:

co-body 1 10

foo 2

main true 4

co-body r

main true 11 -9

co-body x y

main true 10 end

main false cannot resume dead coroutine

You can also create and manipulate coroutines through
the C API: see functions lua_newthread, lua_resume,
and lua_yield.

3 - The Language

This section describes the lexis, the syntax, and the se-
mantics of Lua. In other words, this section describes
which tokens are valid, how they can be combined, and
what their combinations mean.

Language constructs will be explained using the usual
extended BNF notation, in which {a} means 0 or more
a’s, and [a] means an optional a. The complete syntax
of Lua can be found in §9 at the end of this manual.

3.1 - Lexical Conventions

Lua is a free-form language. It ignores spaces (including
new lines) and comments between lexical elements (to-
kens), except as delimiters between names and keywords.

Names (also called identifiers) in Lua can be any string
of letters, digits, and underscores, not beginning with a
digit. Identifiers are used to name variables, table fields,
and labels.

The following keywords are reserved and cannot be
used as names:



and break do else elseif
end false for function goto
if in local nil not

or repeat return then true
until while

Lua is a case-sensitive language: and is a reserved
word, but And and AND are two different, valid names. As
a convention, names starting with an underscore followed
by uppercase letters (such as _VERSION) are reserved for
variables used by Lua.

The following strings denote other tokens:

+ - * / % ~ #
== ~= <= >= < >
( ) { } ]

B . >

M

Literal strings can be delimited by matching single or
double quotes, and can contain the following C-like es-
cape sequences: \a (bell), \b (backspace), \f (form feed),
\n (newline), \r (carriage return), \t (horizontal tab), \v
(vertical tab), \\ (backslash), \" (quotation mark [dou-
ble quote]), and \’ (apostrophe [single quote]). A back-
slash followed by a real newline results in a newline in
the string. The escape sequence \z skips the following
span of white-space characters, including line breaks; it
is particularly useful to break and indent a long literal
string into multiple lines without adding the newlines
and spaces into the string contents.

A byte in a literal string can also be specified by its nu-
merical value. This can be done with the escape sequence
\xX X, where X X is a sequence of exactly two hexadec-
imal digits, or with the escape sequence \ddd, where ddd
is a sequence of up to three decimal digits. (Note that
if a decimal escape is to be followed by a digit, it must
be expressed using exactly three digits.) Strings in Lua
can contain any 8-bit value, including embedded zeros,
which can be specified as "\0’.

Literal strings can also be defined using a long format
enclosed by long brackets. We define an opening long
bracket of level n as an opening square bracket followed
by n equal signs followed by another opening square
bracket. So, an opening long bracket of level 0 is written
as [[, an opening long bracket of level 1 is written as
[=[, and so on. A closing long bracket is defined sim-
ilarly; for instance, a closing long bracket of level 4 is
written as ]====]. A long literal starts with an open-
ing long bracket of any level and ends at the first closing
long bracket of the same level. It can contain any text ex-
cept a closing bracket of the proper level. Literals in this
bracketed form can run for several lines, do not interpret
any escape sequences, and ignore long brackets of any
other level. Any kind of end-of-line sequence (carriage
return, newline, carriage return followed by newline, or
newline followed by carriage return) is converted to a
simple newline.

When parsing a from a string source, any byte in a
literal string not explicitly affected by the previous rules
represents itself. However, Lua opens files for parsing
in text mode, and the system file functions may have
problems with some control characters. So, it is safer to
represent non-text data as a quoted literal with explicit
escape sequences for non-text characters.

For convenience, when the opening long bracket is im-
mediately followed by a newline, the newline is not in-
cluded in the string. As an example, in a system using
ASCII (in which ’a’ is coded as 97, newline is coded as
10, and ?1’ is coded as 49), the five literal strings below
denote the same string:

’alo\n123"?
"alo\n123\""

= >\9710\10\04923"°
= [[alo

123"1]

a = [==

alo

123"]==]

1]

PP

A numerical constant can be written with an op-
tional fractional part and an optional decimal exponent,
marked by a letter e or E. Lua also accepts hexadeci-
mal constants, which start with 0x or 0X. Hexadecimal
constants also accept an optional fractional part plus an
optional binary exponent, marked by a letter p or P. Ex-
amples of valid numerical constants are

3 3.0 3.1416 314.16e-2 0.31416E1
Oxff O0x0.1E O0xA23p-4 0X1.921FB54442D18P+1

A comment starts with a double hyphen (--) anywhere
outside a string. If the text immediately after -- is not
an opening long bracket, the comment is a short com-
ment, which runs until the end of the line. Otherwise,
it is a long comment, which runs until the corresponding
closing long bracket. Long comments are frequently used
to disable code temporarily.

3.2 - Variables

Variables are places that store values. There are three
kinds of variables in Lua: global variables, local variables,
and table fields.

A single name can denote a global variable or a local
variable (or a function’s formal parameter, which is a
particular kind of local variable):

var ::= Name

Names denote identifiers, as defined in §3.1.

Any variable name is assumed to be global unless ex-
plicitly declared as a local (see §3.3.7). Local variables
are lezically scoped: local variables can be freely accessed
by functions defined inside their scope (see §3.5).

Before the first assignment to a variable, its value is
nil.

Square brackets are used to index a table:

var ::= prefixexp ‘[’ exp ‘]’

The meaning of accesses to table fields can be changed
via metatables. An access to an indexed variable t [i] is
equivalent to a call gettable_event (t,i). (See §2.4 for
a complete description of the gettable_event function.
This function is not defined or callable in Lua. We use
it here only for explanatory purposes.)

The syntax var.Name is just syntactic sugar for
var ["Name"]:



‘.’ Name

var ::= prefixexp

An access to a global variable x is equivalent to _ENV. x.
Due to the way that chunks are compiled, _ENV is never
a global name (see §2.2).

3.3 - Statements

Lua supports an almost conventional set of statements,
similar to those in Pascal or C. This set includes as-
signments, control structures, function calls, and variable
declarations.

3.3.1 - Blocks

A block is a list of statements, which are executed se-

quentially:
block ::= {stat}

Lua has empty statements that allow you to separate

statements with semicolons, start a block with a semi-
colon or write two semicolons in sequence:

stat ::= ¢;°

A block can be explicitly delimited to produce a single
statement:

stat ::= do block end

Explicit blocks are useful to control the scope of vari-
able declarations. Explicit blocks are also sometimes
used to add a return statement in the middle of another
block (see §3.3.4).

3.3.2 - Chunks

The unit of execution of Lua is called a chunk. Syntac-
tically, a chunk is simply a block:

chunk ::= block

Lua handles a chunk as the body of an anonymous
function with a variable number of arguments (see
§3.4.10). As such, chunks can define local variables,
receive arguments, and return values. Moreover, such
anonymous function is compiled as in the scope of an ex-
ternal local variable called _ENV (see §2.2). The resulting
function always has _ENV as its only upvalue, even if it
does not use that variable.

A chunk can be stored in a file or in a string inside the
host program. To execute a chunk, Lua first precompiles
the chunk into instructions for a virtual machine, and
then it executes the compiled code with an interpreter
for the virtual machine.

Chunks can also be precompiled into binary form; see
program luac for details. Programs in source and com-
piled forms are interchangeable; Lua automatically de-
tects the file type and acts accordingly.

3.3.3 - Assignment

Lua allows multiple assignments. Therefore, the syntax
for assignment defines a list of variables on the left side
and a list of expressions on the right side. The elements
in both lists are separated by commas:

stat ::= varlist ‘=’ explist
varlist ::= var {¢,’ var}
explist ::= exp {¢,’ exp}

Expressions are discussed in §3.4.

Before the assignment, the list of values is adjusted to
the length of the list of variables. If there are more values
than needed, the excess values are thrown away. If there
are fewer values than needed, the list is extended with
as many nils as needed. If the list of expressions ends
with a function call, then all values returned by that call
enter the list of values, before the adjustment (except
when the call is enclosed in parentheses; see §3.4).

The assignment statement first evaluates all its expres-
sions and only then are the assignments performed. Thus
the code

i=3
i, ali] = i+1, 20

sets a[3] to 20, without affecting a[4] because the 1 in
a[i] is evaluated (to 3) before it is assigned 4. Similarly,
the line

X, Y=Y, X
exchanges the values of x and y, and
X, ¥V, 2=y, 2, X

cyclically permutes the values of x, y, and z.

The meaning of assignments to global variables and
table fields can be changed via metatables. An assign-
ment to an indexed variable t[1] = val is equivalent to
settable_event(t,i,val). (See §2.4 for a complete de-
scription of the settable_event function. This function
is not defined or callable in Lua. We use it here only for
explanatory purposes.)

An assignment to a global variable x = val is equiva-
lent to the assignment _ENV.x = val (see §2.2).

3.3.4 - Control Structures

The control structures if, while, and repeat have the
usual meaning and familiar syntax:

stat while exp do block end

stat repeat block until exp

stat ::= if exp then block
{elseif exp then block}
[else block] end

Lua also has a for statement, in two flavors (see
§3.3.5).

The condition expression of a control structure can re-
turn any value. Both false and nil are considered false.
All values different from nil and false are considered
true (in particular, the number 0 and the empty string
are also true).



In the repeat—until loop, the inner block does not
end at the until keyword, but only after the condition.
So, the condition can refer to local variables declared
inside the loop block.

The goto statement transfers the program control to
a label. For syntactical reasons, labels in Lua are con-
sidered statements too:

stat ::= goto Name
stat ::= label
label ::= ‘::’ Name ‘::’

A label is visible in the entire block where it is defined,
except inside nested blocks where a label with the same
name is defined and inside nested functions. A goto may
jump to any visible label as long as it does not enter into
the scope of a local variable.

Labels and empty statements are called wvoid state-
ments, as they perform no actions.

The break statement terminates the execution of a
while, repeat, or for loop, skipping to the next state-
ment after the loop:

stat ::= break

A break ends the innermost enclosing loop.

The return statement is used to return values from
a function or a chunk (which is a function in disguise).
Functions can return more than one value, so the syntax
for the return statement is

stat return [explist] [¢;’]

The return statement can only be written as the last
statement of a block. If it is really necessary to return
in the middle of a block, then an explicit inner block can
be used, as in the idiom do return end, because now
return is the last statement in its (inner) block.

3.3.5 - For Statement

The for statement has two forms: one numeric and one
generic.

The numeric for loop repeats a block of code while a
control variable runs through an arithmetic progression.
It has the following syntax:

¢

stat ::= for Name ‘=’ exp ,’ exp [¢,’ exp]

do block end

The block is repeated for name starting at the value
of the first exp, until it passes the second exp by steps
of the third exp. More precisely, a for statement like

for v = el, e2, e3 do block end
is equivalent to the code:

do
local var,limit,step =
tonumber (el) ,tonumber (e2) , tonumber (e3)
if not (var and limit and step)
then error() end
while (step > 0 and var <= limit) or
(step <= 0 and var >= limit) do
local v var
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block
var

var + step
end
end

Note the following;:

o All three control expressions are evaluated only
once, before the loop starts. They must all result
in numbers.

var, limit, and step are invisible variables. The

names shown here are for explanatory purposes only.

If the third expression (the step) is absent, then a

step of 1 is used.

o You can use break to exit a for loop.

o The loop variable v is local to the loop; you cannot
use its value after the for ends or is broken. If you
need this value, assign it to another variable before
breaking or exiting the loop.

The generic for statement works over functions, called
iterators. On each iteration, the iterator function is
called to produce a new value, stopping when this new
value is nil. The generic for loop has the following syn-
tax:

stat ::= for namelist in explist do block end
namelist ::= Name {¢,’ Name}

A for statement like
for var_1, .-, var_n in explist do block end

is equivalent to the code:

do

local f, s, var = explist

while true do
local var_1, -+, var_n = f(s, var)
if var_1 == nil then break end
var = var_1
block

end

end

Note the following:

o explist is evaluated only once. Its results are an
iterator function, a state, and an initial value for the
first iterator variable.

f, s, and var are invisible variables. The names are

here for explanatory purposes only.

o You can use break to exit a for loop.

o The loop variables var_i are local to the loop; you
cannot use their values after the for ends. If you
need these values, then assign them to other vari-
ables before breaking or exiting the loop.

3.3.6 - Function Calls as Statements

To allow possible side-effects, function calls can be exe-
cuted as statements:
stat ::= functioncall

In this case, all returned values are thrown away. Func-
tion calls are explained in §3.4.9.



3.3.7 - Local Declarations

Local variables can be declared anywhere inside a block.
The declaration can include an initial assignment:

stat ::= local namelist [‘=’ explist]

If present, an initial assignment has the same seman-
tics of a multiple assignment (see §3.3.3). Otherwise, all
variables are initialized with nil.

A chunk is also a block (see §3.3.2), and so local vari-
ables can be declared in a chunk outside any explicit
block.

The visibility rules for local variables are explained in
§3.5.

3.4 - Expressions

The basic expressions in Lua are the following:

exp ::= prefixexp

exp ::= nil | false | true

exp ::= Number

exp ::= String

exp ::= functiondef

exp ::= tableconstructor

exp ::= ‘...?

exp ::= exp binop exp

€Xp ::= unop exp

prefixexp ::= var | functioncall | ‘(’ exp )

Numbers and literal strings are explained in §3.1; vari-
ables are explained in §3.2; function definitions are ex-
plained in §3.4.10; function calls are explained in §3.4.9;
table constructors are explained in §3.4.8. Vararg ex-
pressions, denoted by three dots (’. . .’), can only be used
when directly inside a vararg function; they are explained
in §3.4.10.

Binary operators comprise arithmetic operators (see
§3.4.1), relational operators (see §3.4.3), logical operators
(see §3.4.4), and the concatenation operator (see §3.4.5).
Unary operators comprise the unary minus (see §3.4.1),
the unary not (see §3.4.4), and the unary length operator
(see §3.4.6).

Both function calls and vararg expressions can result
in multiple values. If a function call is used as a state-
ment (see §3.3.6), then its return list is adjusted to zero
elements, thus discarding all returned values. If an ex-
pression is used as the last (or the only) element of a
list of expressions, then no adjustment is made (unless
the expression is enclosed in parentheses). In all other
contexts, Lua adjusts the result list to one element, dis-
carding all values except the first one.

Here are some examples:

£0O -- adjusted to O results
g(£0),x) -- £() is adjusted to 1 result
g(x,£0)) -- g gets x plus all results

from £()

f() is adjusted to 1 result
(c gets nil)

a gets the 1st vararg
parameter, b gets the 2nd
(both a and b can get nil

a,b,c = £ ,x --

a,b

-
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if there is no corresponding
vararg parameter)

a,b,c = x,f() -- £() is adjusted to 2 results
a,b,c = £O -- £() is adjusted to 3 results
return () -- returns all results from f()
return ... -- returns all received vararg
-- parameters
return x,y,f() -- returns x, y, and all
-- results from f()
{£O} -- creates a list with all
-- results from f()
{...} -- creates a list with all
-- vararg parameters
{f(,nil} -- £() is adjusted to 1 result

Any expression enclosed in parentheses always results
in only one value. Thus, (f(x,y,2z)) is always a single
value, even if f returns several values. (The value of
(f(x,y,2)) is the first value returned by f or nil if £
does not return any values.)

3.4.1 - Arithmetic Operators

Lua supports the usual arithmetic operators: the binary
+ (addition), - (subtraction), * (multiplication), / (divi-
sion), % (modulo), and ~ (exponentiation); and unary -
(mathematical negation). If the operands are numbers,
or strings that can be converted to numbers (see §3.4.2),
then all operations have the usual meaning. Exponen-
tiation works for any exponent. For instance, x~(-0.5)
computes the inverse of the square root of x. Modulo is
defined as

ah a - math.floor(a/b)*b
That is, it is the remainder of a division that rounds

the quotient towards minus infinity.

3.4.2 - Coercion

Lua provides automatic conversion between string and
number values at run time. Any arithmetic operation
applied to a string tries to convert this string to a num-
ber, following the rules of the Lua lexer. (The string may
have leading and trailing spaces and a sign.) Conversely,
whenever a number is used where a string is expected, the
number is converted to a string, in a reasonable format.
For complete control over how numbers are converted to
strings, use the format function from the string library
(see string.format).

3.4.3 - Relational Operators

The relational operators in Lua are

< > <= >=
These operators always result in false or true.
Equality (==) first compares the type of its operands.
If the types are different, then the result is false. Other-
wise, the values of the operands are compared. Numbers
and strings are compared in the usual way. Tables, user-
data, and threads are compared by reference: two objects

are considered equal only if they are the same object.



Every time you create a new object (a table, userdata,
or thread), this new object is different from any previ-
ously existing object. Closures with the same reference
are always equal. Closures with any detectable differ-
ence (different behavior, different definition) are always
different.

You can change the way that Lua compares tables and
userdata by using the "eq" metamethod (see §2.4).

The conversion rules of §3.4.2 do not apply to equality
comparisons. Thus, "0"==0 evaluates to false, and t [0]
and t["0"] denote different entries in a table.

The ~= operator is the negation of equality (==).

The order operators work as follows. If both argu-
ments are numbers, then they are compared as such.
Otherwise, if both arguments are strings, then their val-
ues are compared according to the current locale. Other-
wise, Lua tries to call the "1t" or the "le" metamethod
(see §2.4). A comparison a>b is translated to b<a and
a>=b is translated to b<=a.

3.4.4 - Logical Operators

The logical operators in Lua are and, or, and not. Like
the control structures (see §3.3.4), all logical operators
consider both false and nil as false and anything else
as true.

The negation operator not always returns false or
true. The conjunction operator and returns its first ar-
gument if this value is false or nil; otherwise, and re-
turns its second argument. The disjunction operator or
returns its first argument if this value is different from
nil and false; otherwise, or returns its second argu-
ment. Both and and or use short-cut evaluation; that is,
the second operand is evaluated only if necessary. Here
are some examples:

10 or 20 --> 10
10 or error() --> 10
nil or "a" —--> "a"
nil and 10 --> nil
false and error() --> false
false and nil --> false
false or nil --> nil
10 and 20 --> 20

(In this manual, --> indicates the result of the preced-
ing expression.)

3.4.5 - Concatenation

The string concatenation operator in Lua is denoted by
two dots (’..”). If both operands are strings or num-
bers, then they are converted to strings according to
the rules mentioned in §3.4.2. Otherwise, the __concat
metamethod is called (see §2.4).

3.4.6 - The Length Operator

The length operator is denoted by the unary prefix op-
erator #. The length of a string is its number of bytes
(that is, the usual meaning of string length when each
character is one byte).
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A program can modify the behavior of the length
operator for any value but strings through the __len
metamethod (see §2.4).

Unless a __len metamethod is given, the length of a
table t is only defined if the table is a sequence, that is,
the set of its positive numeric keys is equal to 1..n for
some integer n. In that case, n is its length. Note that a
table like

{10, 20, nil, 40}

is not a sequence, because it has the key 4 but does not
have the key 3. (So, there is no n such that the set 1..n
is equal to the set of positive numeric keys of that table.)
Note, however, that non-numeric keys do not interfere
with whether a table is a sequence.

3.4.7 - Precedence

Operator precedence in Lua follows the table below, from
lower to higher priority:

or
and

< > <= >= "= ==
+ -

* / A

not # - (unary)

As usual, you can use parentheses to change the prece-
dences of an expression. The concatenation (’..’) and
exponentiation (’~’) operators are right associative. All
other binary operators are left associative.

3.4.8 - Table Constructors

Table constructors are expressions that create tables.
Every time a constructor is evaluated, a new table is
created. A constructor can be used to create an empty
table or to create a table and initialize some of its fields.
The general syntax for constructors is

tableconstructor ::= ‘{’> [fieldlist] ‘}’
fieldlist ::= field {fieldsep field}
[fieldsep]
field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp
| exp
fieldsep ::= ¢, | ¢;?

Each field of the form [expl] = exp2 adds to the new
table an entry with key expl and value exp2. A field of
the form name = exp is equivalent to ["name"] = exp.
Finally, fields of the form exp are equivalent to
[i] = exp, where i are consecutive numerical integers,
starting with 1. Fields in the other formats do not affect
this counting. For example,

a={[EWI=g; "x", 1, £(x),
[30] = 23; 45 }

X =

llyll;

is equivalent to



do
local t = {}
t[f(1)] =g
t[1] = "x" -- 1st exp
t[2] = "y" -- 2nd exp
t.x =1 -- t["x"] =1
t[3] = £(x) -- 3rd exp
t[30] = 23
t[4] = 45 -- 4th exp
a=t

end

If the last field in the list has the form exp and the
expression is a function call or a vararg expression, then
all values returned by this expression enter the list con-
secutively (see §3.4.9).

The field list can have an optional trailing separator,
as a convenience for machine-generated code.

3.4.9 - Function Calls

A function call in Lua has the following syntax:

functioncall ::= prefixexp args

In a function call, first prefixexp and args are evalu-
ated. If the value of prefixexp has type function, then
this function is called with the given arguments. Other-
wise, the prefixexp "call" metamethod is called, having
as first parameter the value of prefixexp, followed by the
original call arguments (see §2.4).

The form

<.

functioncall ::= prefixexp ‘:’ Name args

can be used to call "methods". A call v:name(args)
is syntactic sugar for v.name(v,args), except that v is
evaluated only once.

Arguments have the following syntax:

args ::= ‘(’ [explist] ¢)?
args ::= tableconstructor
args ::= String

All argument expressions are evaluated before the call.
A call of the form f{fields} is syntactic sugar for
f({fields}); that is, the argument list is a single new
table. A call of the form f’string’ (or f"string" or
f[[stringl]) is syntactic sugar for £f(’string’); that
is, the argument list is a single literal string.

A call of the form return functioncall is called a
tail call. Lua implements proper tail calls (or proper tail
recursion): in a tail call, the called function reuses the
stack entry of the calling function. Therefore